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Abstract

We propose a search and matching model where agents can choose who
to meet but have to pay a search cost to locate potential matches more
accurately. The model features a tension between an agent’s desire to find
a more productive match and to maximize the odds that interest is mutual.
This tension drives a wedge between the shape of sorting patterns and the
shape of the underlying match payoff function allowing for better empirical
identification of preferences. We show the empirical relevance of our model
by applying it to the U.S. marriage market.
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1 Introduction

The search for a partner—whether in business or in personal life—includes

both productive and strategic considerations: People seek productive part-

nerships that maximize their pay-offs, but also search strategically by con-

sidering the likelihood a potential partner will also be interested in them.

As a result, we observe that matching is not perfectly assortative nor purely

random. For instance, the empirical marriage literature documents an abun-

dance of matches between inferior and superior partners.1 Understanding

why this is the case is important for understanding the roles played by pref-

erences and frictions in the matching process, and for evaluating losses from

mismatch.

One reason for apparent mismatch may be that the econometrician does

not observe all the match-relevant characteristics.2 However, even studies

with exhaustive information about the qualities of potential matches and

their choice patterns leave a large part of the variation in the data unex-

plained.3

Another important reason is search frictions. Matches between inferior

and superior types may form if one of the partners cannot afford to ”wait for

the best” and decides to ”settle for the rest”.4 Who marries whom is also

influenced by who meets whom.5 Although circumstances are a major driver

of the meeting process, whom to meet is also a choice. To our knowledge,

the existing literature is silent on how to model this choice. Instead, it is

common to either postulate an exogenous random meeting process or assume

1See survey by Chiaporri and Salanie (2015) and references therein.
2See Choo and Siow (2006) and Galichon and Salanie (2012).
3See Hitsch et. al. (2010).
4See Eeckhout (1999), Shimer and Smith (2000), Adachi (2003).
5See e.g. Belot and Francesconi (2013).
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that meeting the best partner is costless.

In this paper we propose a parsimonious way to model the choice of

whom to meet, that captures the salient features of the meeting process.

One reason that people cannot start their search by simply contacting the

best partners is that they are uncertain who those are. However, people can

choose to put some effort into finding out about the options and locating

the best partners. Empirical studies of discrete choice suggest that people

respond to incentives by putting more effort and locating best options with

a larger probability when stakes are higher.6 The tendency to choose options

with a higher payoff more often has also been extensively documented for

marriage market choices.7 To accommodate this empirical pattern, we build

our modeling strategy on the growing stochastic discrete choice literature.

We assume that agents choose who to contact in a probabilistic way. The

strategies chosen by agents are their distributions of interest. Agents are

able to target one or several potential partners by contacting them with

higher probability. However, increasing the likelihood of contacting the best

partner involves cognitive effort. We capture this intuition by associating

a proportional cost with a measure of distance between an ”uninformed”

strategy and the agent’s strategy of choice. We borrow the specification

of cost from the burgeoning literature on discrete choice under information

frictions.8 With this approach, our model naturally captures the intuition

that agents choose to contact more often the potential partners that yield a

higher expected payoff.

Another reason for contacting a potential partner is confidence that in-

terest is likely to be mutual, while partners that are unlikely to reciprocate

6See the large literature starting with Hey and Orme (1994).
7See Fisman et. al. (2006) and Hitsch et. al. (2010).
8See Cheremukhin et. al. (2015) and Matejka and McKay (2015).
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are worth excluding. Thus, people act strategically not only when deciding

whether to form a match or wait for a better option, but also when choosing

who to contact. Our model captures this second strategic motive, as agents’

equilibrium strategies respond positively both to the utility they derive from

a match, and the likelihood that interest will be mutual. Thus, our model

endogenizes the randomness of the meeting process by formalizing the fact

that when looking for a match agents have two incentives: first, to maximize

their actual payoffs (which we refer to as the productive motive), and second,

to maximize the odds of forming a match (which we refer to as the strategic

motive).

We first present a bare-bones one-shot model that has the minimal in-

gredients to showcase the mechanism. We define a matching equilibrium

of the model as the pure-strategy Nash equilibrium between agents’ proba-

bilistic strategies. This solution concept is less restrictive than the stability

requirement coming from cooperative games. Nonetheless, we prove exis-

tence of equilibirum, derive the necessary conditions characterizing it, and

show sufficient conditions for its uniqueness. Furthermore, we show that the

equilibria that emerge from a positive and finite cost are inefficient relative

to the constrained Pareto allocation, although the outcomes are constrained

efficient in both limiting cases.

Our theoretical results are invaluable for building intuition. The meeting

rates in the model are determined by the interaction between the productive

and strategic motives. The relative strength of the two motives depends on

the search cost. When the cost is low, locating the best partner requires

little effort, and the likelihood of reciprocation increases. In this case, the

reciprocity of interest is the paramount determinant of who meets whom,

while the importance of joint productivity may be undermined by the lack
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of mutual interest. This case supports multiple equilibrium arrangements of

mutual interest, but only a subset of these arrangements approaches the set

of stable allocations in the frictionless limit.

When it is costly to locate the best partner, the likelihood of contacting

an inferior partner increases. Payoffs become the driving force behind who

meets whom. In the unique equilibrium, every agent’s strategy is to chase the

partner that would yield the highest payoff, while the impact of mutuality of

interest is minimal.

This property can be used for empirical identification of agents’ pref-

erences. In particular, the literature describes ”horizontal” (attraction to

similar agents) and ”vertical” (attraction based on a commonly agreed-upon

ranking) preferences,9 but finds it hard if not impossible to distinguish be-

tween these cases empirically.10 Indeed, both cases lead to identical assor-

tative stable matching in the frictionless case. In contrast, the equilibrium

matching rates predicted by our model differ markedly for these two cases.

When preferences are ”horizontal”, the strategic and productive motive pull

agents in the same direction, as look-alikes both get the highest payoff from

each other and their interest is also more likely to be mutual. In this case, a

stochastic version of assortative matching is preserved in equilibrium. How-

ever, in the case of vertical preferences, there is common agreement on the

ranking of agents and everybody tries to chase the top type despite the lower

likelihood of mutual interest. The productive and the strategic motive pull in

opposite directions. This case gives rise to a novel and surprising equilibrium

pattern that reminisces neither positive nor negative assortative matching.

We call it the mixing equilibrium.11

9See Banerjee et. al. (2013) and references therein.
10See Hitsch et. al. (2010) and related studies.
11Our taxonomy of equilibria in this case follows that of Burdett and Coles (1999).
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This novel matching pattern can be used to distinguish empirically be-

tween horizontal and vertical preferences. We analyze how preferences can

be identified from the data on matching rates and from the data on contact

rates if those are observed. To show the empirical relevance of these theoret-

ical results, we take our model to the data. We find that the model does a

very good job rationalizing the observed matching rates in the U.S. marriage

market based on income, age, and education, and for these three cases we

estimate the underlying payoffs through the lens of our model. Our empirical

results suggest that strategic interactions can be used to recover preferences,

which may indeed differ markedly from observed matching patterns. Ignoring

this difference may result in misleading estimates of preferences and, hence,

of losses from mismatch.

Our paper effectively blends two sources of randomness used in the em-

pirical literature. The first source is a search friction with uniformly random

meetings and impatience, as in Shimer and Smith (2000). The second ap-

proach introduces unobserved characteristics as a tractable way of accounting

for the deviations of the data from the stark predictions of the frictionless

model, as in Choo and Siow (2006) and Galichon and Salanie (2012). We

introduce a search friction into the meeting process by endogenizing agents’

choice of whom to contact. We build on the discrete choice rational inatten-

tion literature—i.e., Cheremukhin, Popova, and Tutino (2015) and Matejka

and McKay (2015)—that derives multinomial logit decision rules as a conse-

quence of cognitive constraints that capture limits to processing information.

Therefore, the equilibrium matching rates in our model have a multinomial

logit form similar to that in Galichon and Salanie (2012). Unlike Galichon

and Salanie, the equilibrium of our model features strong interactions be-

tween agents’ contact rates driven entirely by their conscious choices, rather
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than by some unobserved characteristics with fixed distributions.

The search and matching literature has seen multiple attempts to pro-

duce intermediate degrees of precision with which agents meet their best

choices. In particular, Menzio (2007) and Lester (2011) nest directed search

and random matching to generate outcomes with an intermediate degree of

randomness.12 Our paper produces equilibrium outcomes in between uniform

random matching and the frictionless assignment, without nesting these two

frameworks. Although the directed search literature, such as Eeckhout and

Kircher (2010) and Shimer (2005),13 technically involves a choice of who to

meet, the choice is degenerate - directed by signals from the other side. The

key friction in directed search is the congestion externality where agents on

one side of the market compete with each other for matching with specific

agents on the other side. Congestion slows down matching and can produce

mismatch but does not distort sorting patterns compared with frictionless

assignment. The search friction in our model results in mis-coordination

between agents on opposite sides of the market, which leads to detectable

distortions of sorting patterns.

The paper proceeds as follows: Section 2 describes the model and derives

the theoretical results. In Section 3 we provide an extensive discussion of

properties of equilibria and how they can be used to identify preferences. We

apply the model to the U.S. marriage market data in Section 4. Section 5

states some final remarks.

12Also, see Yang’s (2013) model of “targeted” search that assumes random search within
perfectly distinguishable market segments.

13See Chade, Eeckhout and Smith (2016) for a neat summary of this literature.
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2 Model

We build on the frictionless matching environment of Becker (1973), where

males and females are heterogeneous in their type and all are searching for a

match. Both males and females know the distribution and their preferences

over types on the other side of the market, but there is noise—agents cannot

locate potential partners with certainty. However, they can pay a search cost

to help locate them more accurately.

We model this by assuming that each agent chooses a probability distri-

bution over types. This distribution reflects the likelihood of contacting a

particular agent on the other side. A more targeted search, or a probability

distribution that is more concentrated on a particular group of agents is as-

sociated with a higher cost as the agent needs to exert more effort in deciding

who to contact. The probability distribution needs to satisfy two properties:

1) By the nature of the choice between a finite number of options, the dis-

tribution must be discrete; and 2) for strategic motives to play a role, agents

should be able to vary each element of the distribution and consider small

deviations of each element in response to changes in the properties of the

options. Hence, this probability distribution cannot be confined to a specific

family of distributions.

The choice of functions in economics that satisfy these requirements is

very limited. We use the Kullback-Leibler divergence (relative entropy) as the

measure of search effort. This specification accommodates both full choice of

a distribution and a discrete choice problem. In addition, it turns out that,

in our specific case of a choice among discrete options, this specification

enhances tractability and leads to closed-form solutions. Specifically, the

solution has the form of a multinomial logit that is well understood and

already widely used in empirical studies of discrete choice environments and

7



of the marriage market.

After choosing their optimal probability distribution over types, both

males and females simultaneously make a single draw from their distributions.

If the draw is reciprocated, a match is formed if it is mutually beneficial and

the output from the match is split between the two parties.

2.1 Environment

There are F females indexed by x ∈ {1, ..., F} and M males indexed by

y ∈ {1, ...,M}. Both males and females are heterogeneous in types and are

actively searching for a match.14 A match between female x and male y

generates a payoff Φxy.
15 If a male and a female match, the payoff is split

between them. We normalize the outside option of both to zero. We denote

the payoff appropriated by the female εxy and the payoff appropriated by the

male ηxy, such that Φxy = εxy + ηxy.
16 The payoff and the split generated by

any potential (x, y) match are known ex-ante to female x and male y.

Each female chooses a discrete probability distribution, px (y), which re-

flects the probability with which female x will target male y (seek him out).

Each female x rationally chooses her strategy while facing a trade-off be-

tween a higher payoff and a higher cost of searching. Likewise we denote

the strategy of a each male qy (x). It represents the probability of a male y

targeting a female x. Each agent can vary and choose each element of their

distribution. Placing a higher probability on any particular potential match,

implies that the agent choosing the distribution has exerted more search ef-

fort, will target a potential partner more accurately and hence, will have a

14The extension to multiple identical agents of each type is straightforward and is not
discussed in the paper.

15Note that we do not place any restrictions on the payoff function.
16For simplicity we assume that payoffs are fixed. We discuss the role played by

(non)transferrability in Section 3.1.
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higher probability of matching with them.

A female’s total cost of searching is given by cx (κx(px(y))). This cost is

a function of the search effort, κx, and hence of the probability distribution,

px(y), chosen by female x. Likewise, we denote a male’s cost of searching by

cy (κy(qy(x))), where the cost is a function of the search effort, κy, and hence

of the probability distribution, qy(x), chosen by male y.

Figure 1 illustrates the strategies of males and females. Consider a female

x = 1. The solid arrows show how she assigns a probability p1 (y) of targeting

each male y. Similarly, dashed arrows show the probability q1 (x) that a male

y = 1 assigns to targeting a female x. Once these are selected, each male

and female will make one draw from their respective distribution to determine

which individual they will actually contact. A match is formed between male

y and female x if and only if: 1) according to the female’s draw of y from

px (y), female x contacts male y; 2) according to the male’s draw of x from

qy (x), male y also contacts female x; and 3) their payoffs are non-negative.

Figure 1. Strategies of males and females

Since negative payoffs lead to de facto zero payoffs due to the absence of
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a match, we can assume that all payoffs are non-negative:

Φxy ≥ 0, εxy ≥ 0, ηxy ≥ 0.

Each female x chooses a strategy px (y) to maximize her expected net

payoff:

Yx = max
px(y)

M∑
y=1

εxyqy (x) px (y)− cx (κx (px (y))) .

The female gets her expected return from a match with male y net of

the cost of searching. The probability of a match between female x and

male y is given by the product of the distributions qy (x) px (y). Note that in

equilibrium the matching rate that female x faces from male y equals male y’s

strategy qy (x) . As matching rates are equilibrium objects, they are assumed

to be common knowledge to participating parties.

The cost function is given by cx (κx) = θxκx, where θx is the marginal

cost of search. Here, we are using the linear cost function for simplicity, but

all of our proofs will hold for more general cost functions. As mentioned

earlier, κx reflects search effort and needs to accommodate the full choice of

a discrete distribution. One function that satisfies these requirements is the

following:17

κx =
M∑
y=1

px (y) ln
px (y)

1/M
, (1)

where px (y) must satisfy
M∑
y=1

px (y) = 1 and px (y) ≥ 0 for all y.

17In the model of information frictions used in the rational inattention literature, κx,
would represent the relative entropy between a uniform prior {1/M} over males and the
posterior strategy, px (y). This definition is a special case of Shannon’s channel capacity
where information structure is the only choice variable (See Thomas and Cover (1991),
Chapter 2). See also Cheremukhin et al (2015) for an application to stochastic discrete
choice with information costs.
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Note that, κx, is increasing in the distance between a uniform distribu-

tion {1/M} over males and the chosen strategy, px (y). If an agent does

not want to exert any search effort, she can choose a uniform distribution

px (y) = 1
M

over types, the effort involved in search is zero, and her search

is random. As she chooses a more targeted strategy the distance between

the uniform distribution {1/M} and her strategy px(y) is greater, increasing

κx and the overall cost of searching, and her search will be less random. By

increasing search effort agents bring down uncertainty about the location of

a prospective match, which allows them to target their better matches more

accurately.

Similarly, male y chooses his strategy qy (x) to maximize his expected

payoff:

Yy = max
qy(x)

F∑
x=1

ηxypx (y) qy (x)− cy (κy (qy (x))) ,

where

κy =
F∑
x=1

qy (x) ln
qy (x)

1/F
, (2)

and qy (x) must satisfy
F∑
x=1

qy (x) = 1 and qy (x) ≥ 0 for all x.

2.2 Matching equilibrium

Definition 1. A matching equilibrium is a set of strategies of females,

{px (y)}Fx=1, and males, {qy (x)}My=1, that simultaneously solve problems of

males and females.

The equilibrium of the matching model can be interpreted as a pure-

strategy Nash equilibrium of a strategic form game. In what follows we shall

apply the results for concave n-person games from Rosen (1965). The game

consists of the set of players, the set of actions and the player’s payoffs. The
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set of players is given byI = {x ∈ {1, ..., F} , y ∈ {1, ...,M}}. The set of

actions s ∈ S is given by the cartesian product of the sets of strategies of

females px (y) ∈ Sx and males qy (x) ∈ Sy, where

Sx =

{
px (y) ∈ RM , px (y) ≥ 0,

M∑
y=1

px (y) ≤ 1

}
,

Sy =

{
qy (x) ∈ RF , qy (x) ≥ 0,

F∑
x=1

qx (x) ≤ 1

}
.

The payoffs ui (s) = {Yx (s) , Yy (s)} are defined as follows:

Yx (px (y) , qy (x)) =
M∑
y=1

εxyqy (x) px (y)− cx

(
M∑
y=1

px (y) ln
px (y)

1/M

)
,

Yy (qy (x) , px (y)) =
F∑
x=1

ηxypx (y) qy (x)− cy

(
F∑
x=1

qy (x) ln
qy (x)

1/F

)
.

Theorem 1. A matching equilibrium exists.

Proof. Note that the strategy set of each player is a unit simplex, and there-

fore a non-empty, convex and compact set. For a pure-strategy Nash equi-

librium to exist, each payoff function ui (s) needs to be continuous in the

strategies s, and u (si, s−i) needs to be quasiconcave in si. Indeed, under the

assumption that cost functions are continuous, non-decreasing and (weakly)

convex, the payoff functions are continuous and concave in the own strategies

of players. For the case of a linear cost function these restrictions are trivially

satisfied.

To show uniqueness, we need to introduce some additional notation. Note

that for each player i ∈ I the strategy set can be represented as Si =

{si ∈ Rmi , hi (si) ≥ 0} where hi is a concave function. Indeed in our case, the
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functions hx (px (y)) =

[
px (1) , ..., px (M) , 1−

M∑
y=1

px (y)

]
and hy (qy (x)) =[

qy (1) , ..., qy (F ) , 1−
F∑
x=1

qy (x)

]
are concave. Following Rosen, define the

gradient∇u (s) = [∇1u1 (s) , ...,∇mum (s)]T and Hessian: U (s) = ∇i∇jui (s).

Then, if the constraints hi are concave and the symmetrized Hessian U (s) +

UT (s) is negative definite for all s ∈ S then the payoff functions are diag-

onally strictly concave for s ∈ S. We can then use the result that if hi are

concave functions, if there exist interior points s̃i ∈ Si such that hi (s̃i) > 0,

and if the payoff functions are diagonally strictly concave for all s ∈ S then

the game has a unique pure strategy Nash equilibrium.

Theorem 2. The matching equilibrium is unique if

a) cost functions are non-decreasing and convex;

b) ∂cx(κx)
∂κx

∣∣∣
p∗x(y)

= θx > εxyp
∗
x (y);

c) ∂cy(κy)

∂κy

∣∣∣
q∗y(x)

= θy > ηxyq
∗
y (x).

Proof. If the cost functions c (κ) are (weakly) increasing and (weakly) con-

vex in κ, then the payoffs of all males and females are continuous and also

concave in their strategies. Assuming that the cost functions are twice con-

tinuously differentiable functions, the Hessian of this game is the matrix of

all second derivatives. The diagonal elements are all non-positive, consistent

with concavity of the payoffs:
∂2Yx
∂px∂px

= − ∂cx
∂κx

(κx)
1

px (y)
− ∂2cx
∂κx∂κx

(κx)

(
1 + ln

px (y)

1/M

)2

≤ 0,

∂2Yy
∂qy∂qy

= − ∂cy
∂κy

(κy)
1

qy (x)
− ∂2cy
∂κy∂κy

(κy)

(
1 + ln

qy (x)

1/F

)2

≤ 0.

The off-diagonal elements are all non-negative:
∂2Yx
∂px∂qy

= εxy ≥ 0,
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∂2Yy
∂qy∂px

= ηxy ≥ 0.

The remaining cross-derivatives are all zero. Note also that the Hessian is

itself symmetric so there is no need to symmetrize it. To guarantee that the

Hessian is negative definite, we require the following “Diagonal dominance”

conditions:

∣∣∣∣ ∂2Yx
∂px∂px

∣∣∣∣ > ∣∣∣∣ ∂2Yx
∂px∂qy

∣∣∣∣ ,∣∣∣∣ ∂2Yy
∂qy∂qy

∣∣∣∣ > ∣∣∣∣ ∂2Yy
∂qy∂px

∣∣∣∣ .
Diagonal dominance conditions postulate that diagonal elements of the

Hessian are larger in absolute value than any off-diagonal elements, which

in turn guarantees that the Hessian of the game is negative definite. It is

clear that when the cost functions are linear, these conditions simplify to

θx
1

px(y)
> εxy and θy

1
qy(x)

> ηxy. While Rosen’s version requires that these

conditions hold globally for all s ∈ S which would imply θx > εxy and

θy > ηxy, these conditions could be relaxed to require diagonal dominance

to be satisfied only along the equilibrium path. For this we note that since

the constraints are given by unit simplexes (for which index equals one, and

every KKT point is complementary and non-degenerate) we can invoke the

generalized Poincare-Hopf index theorem of Simsek, Ozdaglar, and Acemoglu

(2007) which in this case implies that the equilibrium is unique if the Hessian

is negative-definite at the equilibrium point. Thus, the equilibrium is unique

if diagonal dominance conditions hold only along the equilibrium path, i.e.

if conditions (b) and (c) are satisfied.

Note that the assumptions we make to prove uniqueness are by no means

restrictive. The assumption that cost functions are non-decreasing and con-

vex is a natural one. The additional “diagonal dominance” conditions in our
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case can be interpreted as implying that the search cost should be sufficiently

high for the equilibrium to be unique. If these conditions do not hold, then

there can be multiple equilibria. This is a well-known outcome of the assign-

ment model, which is a special case of our model under zero search costs.

In a frictionless environment, the multiplicity of equilibria is eliminated by

requiring that the matching be “stable”, a solution concept from cooperative

games requiring that there is no profitable pairwise deviation. In our frame-

work, checking for pairwise deviations would require that all males know the

location of all females and vice versa. Since locating agents is costly in our

model, we use the Nash equilibrium solution concept, which implies that the

equilibrium outcome generically does not satisfy “stability.”

Under the assumptions on the cost functions made earlier we can also

obtain a characterization result. The derivatives of the constrained payoff

functions with respect to own strategies are:
∂Yx
∂px

= εxyqy (x)− ∂cx
∂κx

(κx)

(
1 + ln

px (y)

1/M

)
− λx,

∂Yy
∂qy

= ηxypx (y)− ∂cy
∂κy

(κy)

(
1 + ln

qy (x)

1/F

)
− λy.

When cost functions are non-decreasing and convex, it is easy to verify

that first-order conditions are necessary and sufficient conditions for equi-

librium. Rearranging the first-order conditions for males and females, we

obtain

p∗x (y) = exp

(
εxyq

∗
y (x)

θx

)
/

M∑
y′=1

exp

(
εxy′q

∗
y′ (x)

θx

)
,

q∗y (x) = exp

(
ηxyp

∗
x (y)

θy

)
/

F∑
x′=1

exp

(
ηx′yp

∗
x′ (y)

θy

)
. (3)

These necessary and sufficient conditions for equilibrium cast the optimal

strategy of female x and male y in the form of a best response to optimal

strategies of males and females, respectively.
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3 Discussion

3.1 Properties of matching equilibria

The result of Theorem 2 is intuitive. Recall that there are two motives for

female x to target male y: the productive and the strategic motive. The

payoff of a female depends on the product of the portion she appropriates

from the output of the match and the probability of reciprocation. While

her private payoff does not depend on equilibrium strategies, the strategic

motive does.

When the search cost, θ, is very low, females (and males) are able to place

a high probability of targeting one counterparty and exclude all others. It

does not matter what portion of the payoff female x will get from a match

with male y if the male places a low probability on female x. In the extreme,

any pairing of agents is an equilibrium since no one has an incentive to

deviate from any mutual reciprocation. The strategic motive dominates and

multiplicity of equilibria is a natural outcome. As the search costs go to zero,

targeting strategies become more and more precise. In the limit, in every

equilibrium each female places a unit probability on a particular male, and

that male responds with a unit probability of considering that female. Each

equilibrium of this kind implements a matching of the classical assignment

problem (not all of them are stable).

As θ increase, probability distributions become less precise, as it is in-

creasingly costly to target a particular counterparty. That is, the search

costs dampen the strategic motive and the productive motive plays a big-

ger role. At some threshold level of θ the strategic motive is dampened

enough that all agents will choose probabilities primarily seeking a match

with a higher payoff. This level of costs is characterized by the “diagonal

dominance” conditions of Theorem 2. Agents require the strategic motive,
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characterized by the off-diagonal element of the Hessian of the game, to be

lower than the productive motive, captured by the diagonal element. Above

the threshold, the unique equilibrium has the property that each agent places

a higher probability on the counterparty that promises a higher payoff, i.e.,

the productive motive dominates. When search costs go to infinity, optimal

strategies of males and females approach a uniform distribution. This unique

equilibrium implements the standard uniform random matching assumption

extensively used in the literature. Thus, the assignment model and the ran-

dom matching model are special cases of our targeted search model, when θ

is either very low or very high.

Equilibrium conditions (3) also have an intuitive interpretation. They

predict that the higher the female’s private gain from matching with a male,

the higher the probability of targeting that male. Males are naturally sorted

in each female’s strategy by the probability of the female targeting each male.

The strategies of males have the same properties due to the symmetry of the

problem. Theorem 2 predicts that an increase in θ reduces the interaction

between search strategies of females and males. Once θ is sufficiently high,

the intersection of best responses leads to a unique equilibrium. Note that,

by the nature of the index theorem used in the proof of uniqueness, it is

enough to check diagonal dominance conditions locally in the neighborhood

of the equilibrium. There is no requirement for them to hold globally. This

suggests a simple way of computing the unique equilibrium. We first need

to find one solution to the first-order conditions (3) and then check that

diagonal dominance conditions are satisfied.

In appendix A we analyze whether an equilibrium of the model is efficient

from the point of view of a constrained planner. We find that except for the

two extreme cases, the equilibria of the model are socially inefficient. While
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it is socially optimal for both females and males to consider the total payoff of

the match, in the decentralized equilibrium they consider only their private

payoffs. This result is reminiscent of goods with positive externalities where

the producer undersupplies the good if she is not fully compensated by the

marginal social benefits that an additional unit of the good would provide

to society. In our model, additional search effort exerted by an individual

male or female has a positive externality on the whole matching market. In

appendix B we show that the constrained optimum is possible to achieve if

only one side of the market searches actively.

In appendix C we consider an extension of the two-sided matching model

to a repeated setting. Following Eeckhout (1999) and Adachi (2003) we

assume that at the moment that male y and female x meet, each of them

has an additional decision to make. Each agent may choose to form a match

and receive the corresponding share of the surplus, or refuse to form a match

and wait for a better potential partner in future periods if their continuation

value is higher than the payoff from matching with the proposed partner.

The continuation value is assumed to be simply the expected payoff from

matching in the future discounted at the rate ρ, a patience parameter.

When the agents are unable to distinguish partners until they meet, i.e.

when the cost parameter θ approaches infinity, we obtain the Adachi (2003)

model. In that case, if the patience parameter ρ approaches 1, the model

replicates the frictionless matching outcome as agents are able to wait as

long as necessary to meet their best match. Similarly, when agents cannot

wait and match everybody that they meet, i.e. the patience parameter ρ is

set to zero, we obtain our baseline one-shot model. In that case, if agents

are nonetheless able to perfectly distingish among potential partners, i.e. the

parameter θ approaches zero, the model, with a refinement permitting only
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stable matchings, also reproduces the frictionless matching outcome.

The repeated game with patience is instructive as it highlights two inde-

pendent sources of search frictions: the costs of waiting and the costs of dis-

tinguishing among agents. According to Smith et al. (1999), search costs are

divided into external and internal costs. External costs include the monetary

costs of searching and contacting partners as well as the opportunity costs

of the time spent on searching. These costs are captured by the parameter

ρ in the repeated model. Internal costs include the mental effort associated

with the search process, sorting the incoming information, and integrating

it with what the agent already knows. Modeling the internal costs is the

novel feature of our model. Internal costs are captured by parameter θ which

describes the agents’ ability to evaluate available information, depending on

intelligence, prior knowledge, education and training. The properties of the

extended model highlight that both internal and external costs of search are

necessary to obtain outcomes where superior agents are matched with infe-

rior agents in equilibrium: the agents need to be both reasonably impatient

and unable to perfectly distinguish among potential partners. Although the

two types of frictions are quite different in nature, we find that they reinforce

each other: if agents can distinguish their best matches better, the equilib-

rium likelihood of meeting is higher, which increases the continuation value

of waiting, just like an increase in patience.

This extension also highlights two distinguishing features of our model.

First, it emphasizes the difference between the choice of whom to meet con-

strained by cognitive costs, and the choice of whether to form a match or

keep looking for a better one constrained by the physical costs. Ours is an ex-

plicit model of how agents choose who to meet. Second, the extended model

makes clear the source of the difference between the TU (transferable util-
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ity) and the NTU (non-transferable utility) cases. If agents are able to reject

potential partners that are not good enough, then it is important whether

those potential partners can offer a larger share of the surplus in return for

forming a match. The more impatient agents are, the smaller the difference

between the TU and NTU cases. In our one-shot model the TU case and the

NTU case are identical as the continuation values are zero and all matches

are viable.

3.2 Implications for Sorting

To better understand the effect of the productive and strategic motives on

equilibrium strategies and matching rates it is useful to consider simple ex-

amples of payoffs. Let us consider a matching market where there are just

two males and two females, with types labeled, high (H) and low (L). Let us

also consider two specific cases of the form of the payoff function, which in

the literature are often referred to as horizontal and vertical preferences.18

Case one: The high type female is better off with a high type male, and

the low type female is better off with a low type male. The same property

is true for males. We shall generally refer to a payoff function where for

each type the best option on the other side is different - as the case of hor-

izontal preferences. Case two: Both females prefer the high type male, and

both males prefer the high type female. We shall generally refer to a payoff

function for which everyone’s best option is the same type as the case of

vertical preferences. These definitions only place restrictions on the struc-

ture of agetns’ best options, and are therefore less restrictive than existing

definitions in the literature.

In the case of horizontal preferences, the strategic and the productive

18See e.g. Hitsch et al (2010) and Herrenbrueck et al (2016).
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motives are aligned. The productive motive points all agents in different

directions - towards their best options, and the strategic motive ensures that

the same agent that implies a higher payoff is also the one that is more likely

to reciprocate (because agents have no incentive to compete for the same

match). However, in the case of vertical preferences, the productive motive

points all agents in the same direction, while the strategic motive tends to

coordinate agents on paying attention to those whom their competitors are

less likely to consider, to maximize the odds of finding a match. Thus, there

is a conflict between the two motives as they pull intentions in different

directions.

If preferences are horizontal, and the search costs are low, our model can

have two different equilibrium patterns. The first pattern is where the high

type is more likely to target the high type and the low type to target the

low type (HH, LL). This is the case of positive assortative matching (PAM).

The second pattern is when the high type is more likely to target a low

type, because the low type is more likely to reciprocate (HL, LH). This is

the case of negative assortative matching (NAM). However, if search costs

are high, only the PAM equilibrium survives because the productive motive

dominates.

If preferences are vertical, and search costs are low, in addition to the

PAM and NAM equilibria, there is a third equilibrium pattern, which we

call a mixing equilibrium. In the mixing equilibrium, both females target

the high type male, and both males target the high type female. Moreover,

for high enough search costs, the unique equilibrium has the mixing pattern,

while the PAM and NAM equilibria disappear. These patterns are illustrated

in Figure 1.

This last result is in stark contrast with the literature on optimal assign-
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PAM NAM Mixing

Figure 1: Three types of equilibria and their sorting patterns
Note: We show by an arrow the direction in which each agent places the highest probability.

ment, which predicts a PAM equilibrium as the only stable outcome for either

horizontal or vertical preferences. The prediction of the assignment model

is driven by the strategic motive. If search costs are low, the high types are

only interested in each other, so it makes no sense for the low types to target

the high types as, despite a higher potential payoff, the chance their interest

will be reciprocated is zero. However, when search costs are high enough,

the strategic motive is dampened to the extent that the productive motive

starts to play a dominant role. The productive motive instructs people to

place a higher probability on the type that promises a higher payoff. Hence,

the unique mixing equilibrium.

This basic intuition has important implications for empirical inference.

If the productive and strategic motives are perfectly aligned, as they are for

horizontal preferences, then the shape of the equilibrium matching pattern

is very similar to the shape of the payoff function. The presence of a con-

flict between these motives, as in the case of vertical preferences, drives a

wedge between the shape of the payoff and the shape of the matching rates.

The conflict between motives creates a large number of competing agents

that would be able to compensate for the lower payoff by a higher probabil-

ity of reciprocation. Therefore, the pattern of who meets whom will differ

substantially from the pattern of who would be better off with whom.
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Figure 2: Correlation of Matching rate and Payoff

To quantify this difference, we run a set of Monte Carlo simulations and

compute the correlation between the equilibrium matching rate and the un-

derlying payoff function. For the Monte Carlo simulations, we assume three

males and three females and draw each element of the 3-by-3 payoff matrix

from a uniform distribution. We make 25,000 draws. We then find all equi-

libria and corresponding matching rates for each draw of the payoff function.

For all draws, we compute the correlation between the matrix of equilibrium

matching rates and the payoff matrix. In Figure 2 we show the probability

density functions of correlations for three classes of payoff functions: vertical

preferences, horizontal preferences, or no clear preference pattern.

We find that, indeed, in the case of vertical preferences the correlation is

significantly lower than that in the case of horizontal preferences. The in-

termediate shapes of payoffs generate intermediate values of the correlation.
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Thus, when our model is the true data-generating process, the conflict be-

tween the productive and strategic motive drives a substantial wedge between

the shape of the underlying payoff function and the shape of the matching

rate. Consequently, the empirical researcher could easily arrive at wrong con-

clusions about the shape of the underlying payoff and the optimal frictionless

allocation by simply looking at the shape of the matching rates. As we shall

discuss at the end of the empirical section, this is indeed what workhorse

models of the marriage market do.

To put this result in context, we note that both random matching models

a la Shimer and Smith (2000), and directed search models a la Eeckhout and

Kircher (2010) can produce a substantial wedge between the shape of the

payoff function and the shape of the matching rates. In the case of random

matching the distribution is uniform, while in the case of directed search

matching is fully assortative. Matching patterns in both of these cases are

accommodated by our model under extreme (very high or very low) values

of search costs. Our model also spans the continuum of matching patterns

in between these two extremes.

To show that the wedge between the matching pattern and the payoff

function is indeed present in the data and empirically relevant, in the em-

pirical section, we explore three prominent examples of matching patterns

in the marriage market. We show that, when viewed through the lens of

our model, they exhibit strong vertical preferences. Also, we observe a sub-

stantial wedge between the shape of the underlying payoff function and the

matching rate.
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3.3 Identification

Identifying preferences empirically, in particular, distinguishing between hor-

izontal and vertical preferences, is hard because both cases lead to identical

assortative stable matching in the frictionless case. The interaction between

the productive and strategic motives in our model makes it possible to use the

data to distinguish empirically between horizontal and vertical preferences.

The empirical strategy will depend on data availability, however.

The literature distinguishes two important situations. The first situation

is when the contact rates are available. For instance, Hitsch et al (2010)

observe the contact rates of both men and women on a dating website, from

which one can infer for each type of male and female what their distributions

of interest are, px (y) and qy (x). Since these are distributions that sum up

to one, in this case, the data contains observations with 2×M ×N −M −N
degrees of freedom. Assuming non-transferable utility, these data allow the

researcher to identify the shape of the payoff functions for each type of men

and women, εxy and ηxy, which have a total of 2×M×N degress of freedom.

Our model allows for direct identification of these unobserved preferences up

to a constant for each type by using the necessary conditions for equilibrium.

Specifically, rearranging equations 3 we obtain:

ln
p∗x (y)

p∗x (y′)
=
εxy
θx
q∗y (x)− εxy′

θx
q∗y′ (x) ,

ln
q∗y (x)

q∗y (x′)
=
ηxy
θy
p∗x (y)− ηx′y

θy
p∗x′ (y) . (4)

If the researchers were to restrict attention to cases of equilibrium unique-

ness (which is straightforward to test after finding the payoffs), then these

equations uniquely identify the best match for each type of male and female,

and thus determine whether preferences are horizontal, vertical, or some mix

of the two. We were able to routinely recover the correct structure of pref-
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erences in Monte-Carlo simulations. Unfortunately we were unable to apply

this strategy to the data in Hitsch et al (2010) due to their non-disclosure

agreement. As this strategy requires substantial investment in data collection

that goes beyond the scope of this paper, we leave the empirical application

of this strategy for future research.

The second, more common, situation is when only matching rates are

available. For instance, Choo and Siow (2006), observe matching rates for

men and women in the U.S. marriage market for specific years, from which

one can infer the product px (y) qy (x). In this case, the data contains ob-

servations with M ×N degrees of freedom. Of course, there are not enough

restrictions in the data to identify payoffs in a non-transferable utility case,

but if one were to assume transferable utility with a pre-defined split of the

joint payoff between males and females, Φxy, then the unobserved payoff func-

tions also have M ×N degress of freedom. This makes the payoff functions

identifiable in principle.

However, we find that in our model the mapping between the payoff and

the matching rate is not necessarily invertible. By that we mean that there

may exist matching rate patterns that cannot in principle be generated by

our model. Also, we cannot exclude the possibility that some matching rate

pattern could be generated by more than one payoff function (although we

could not find an example of this in practice).

Given the potential non-invertibility of the mapping between the payoff

and the matching rates, our empirical methodology proceeds in three steps.

First, we assume that search costs are identical across agents on both sides

of the marriage market, θx = θy = θ. This assumption will allow us to

identify the ratio of the payoff to search cost, Φxy/θ, for each pair of types.

In addition, we assume that each payoff is split equally between males and

26



females, i.e. εxy = ηxy = Φxy/2. Second, for any shape of the payoff function,

Φxy, we find all equilibria (if there are more than one) and compute all

corresponding equilibrium matching rates implied by the model. Third, we

search for a shape of the payoff that maximizes the likelihood function of the

data given the predicted matching rates.

Whenever a proposed payoff function produces multiple equilibria, we

select the one that fits the observed matching rate best, i.e. has the high-

est likelihood. Maximization of the likelihood function efficiently minimizes

the properly weighted sum of distances between the data and the model’s

prediction and should lead to consistent estimates. Maximum likelihood es-

timation of discrete games with multiple equilibria have been reasonably well

studied in the literature, e.g. Aguirregabiria and Mira (2007). Here we do

not employ any computational tricks since the 3-by-3 case can be computed

by brute force in reasonable time. The results of such estimation can be

treated as an upper bound on the explanatory power of the model.

In the empirical section, we apply this method to three prominent exam-

ples of sorting in the marriage market and find that the model fits the data

very well. Despite matching rate data suggesting mostly horizontal prefer-

ences, when viewed through the lens of our model with strategic motives, the

data are consistent with a vertical preference structure.

4 Empirical Application

To take the model to the data, we use a standard dataset for matching rates

in the U.S. marriage market. The data on unmarried males and females

and newly married couples comes from IPUMS for the year 2001.19 For

computational transparency we attribute both males and females to three

19We thank Gayle and Shephard (2015) for kindly sharing the IPUMS data with us.
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equally sized bins, which we refer to as low (L), medium (M), and high (H)

types. We consider three dimensions along which males and females evaluate

each other in the marriage market: income, age, and education. In each case

we choose the cutoffs between bins in such a way as to split the whole U.S.

population of each gender to equally sized bins.

In the case of age, we restrict our attention only to adults between the

ages 21 and 33. To make them as close as possible to equal size, the bins cor-

respond to ages 21-23, 24-27, 28-33. We discard all younger and older people

from the analysis because there is a disproportionate amount of unmarried

people in these other age categories who only rarely marry. One reason for

this may be that a large fraction of them are not searching for a spouse and

are thus not participating in the marriage market. To avoid misspecification

due to our inability to observe search effort, we exclude them from our anal-

ysis. In the case of education, the natural breakdown into three bins is to

have people who never attended college, those who are currently in college,

and those who have graduated from college. Income is a continuous charac-

teristic, so the three bins correspond to people with low, medium, and high

incomes.

For each of the three cases, we estimate the shape of the payoff function

using the maximum likelihood methodology described earlier for the case

of transferable utility. We assume that all currently unmarried males and

females are searching, and the number of matches is proxied by the number

of couples that were married in the past 12 months, as indicated by answers

to the questionnaire. The dataset contains 93,599 unmarried males, 82,673

unmarried females, and 23,572 newly married couples above the age of 21.

The matching rate for the case of income is presented in the left panel of

Figure 3. The estimate of the underlying payoff is shown in the right panel
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of the same Figure. A notable property of the payoff is that it shows strong

vertical preference. That is, marrying a spouse with a higher income is always

better. We find that the matching rate and the payoff have a correlation of

0.72.

The matching rate for the sorting by age is presented in the left panel

of Figure 4. Looking at the shape of the matching rate, we would expect

to see the horizontal preferences here, with slightly older males looking for

slightly older females. However, the shape of the payoff that best explains

this sorting pattern is also consistent with vertical preferences. Females have

a strong preference for older males independent of their own age. Meanwhile,

males are virtually indifferent to the age of their spouse. The highest payoff

is produced by males at age 30 marrying females at age 23. The correlation

between the matching rate and the payoff is a staggeringly low 0.42.

The matching rate for sorting by education is presented in the left panel

of Figure 5. In this case the payoff exhibits segments of both vertical and

horizontal preferences. Low educated people and high educated people prefer

someone with their same level of education, generating a region of horizontal

preferences. However, people with a medium level of education tend to prefer

highly educated people, generating a region with vertical preferences. The

matching rate and the payoff function have a correlation of 0.52.

A widely used workhorse model of the marriage literature is the model of

Choo and Siow (2006). They estimate a static transferable utility model that

generates a nonparametric marriage matching function. This model postu-

lates that, in equilibrium, each pair of cohorts of males and females reaches

an implicit agreement on the matching rate among themselves; matching (or

staying single) is a voluntary decision. In their model, the payoff is recov-

ered as a simple algebraic function of the matching rates and the number of
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Figure 3: Sorting by income

Figure 4: Sorting by age

Figure 5: Sorting by education
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people searching. An important feature of the model is that the matching

rate depends only on the characteristics of the agents directly involved in the

match, but not on the characteristics of other agents present in the marriage

market. The strategic motive is absent from their model, so the shape of the

matching rate mimics closely the shape of the payoff function. This implies

that the distance between the assumptions and implications is minimal: the

correlation between the matching rates across pairs of types and the implied

values of the payoff are close to one.

We illustrate this feature in Figure 6 where we use the 3-by-3 Monte

Carlo simulation from Section 3.2. We plot the correlation between the true

underlying payoff and the equilibrium matching rate obtained from our model

on the horizontal axis and the correlation between the same matching rate

and the corresponding payoff function recovered by the model of Choo and

Siow on the vertical axis. We find that in many cases, the shape of the true

payoff and of the matching rate descends to 0.4, while the model of Choo and

Siow would imply that they have a similar shape with a correlation above

0.75. We color the payoffs consistent the three types of preferences in three

different colors. We find that while the correlation depends significantly on

the pattern of preferences in our model, in Choo and Siow’s model it does

not.

The Figure also compares our empirical findings with the Monte Carlo

simulation. We find that the three prominent empirical examples that we

have considered indeed belong to the range of correlation values commonly

generated by payoffs consistent with vertical preferences.
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Figure 6: Monte Carlo results and Data

This result emphasizes the importance of considering the effect of strate-

gic motives on the sorting patterns in empirical research. If a researcher

looks at the data through the lens of a model with exogenous randomness,

that model by construction ignores any strategic considerations that may

affect agents’ search strategies. As we have shown, strategic considerations

can drive a significant wedge between the shape of the preferences and the

shape of the observed sorting pattern. Ignoring search frictions that affect

the decision of who to meet may thus lead to vastly misleading conclusions

regarding the amount of mismatch present in a market and the size of the

losses associated with it. In this paper, we have presented and demonstrated

the effectiveness of an identification strategy that uses the strategic motives

of agents do identify preferences, with the emphasis on distinguishing vertical

and horizontal preference structures.
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5 Final Remarks

In this paper we propose a model of probabilistic choice by agents in a match-

ing market of whom to contact when locating the best partners involves cog-

nitive effort. The model features a productive motive whereby agents target

partners that render a higher payoff and a strategic motive which drives

agents towards partners who are more likely to show mutual interest. We

find that accounting for the interaction of strategic and productive consid-

erations allows the identification of underlying preferences, while ignoring

this interaction may result in misleading implications regarding the degree of

mismatch and hence the losses associated with it. Understanding who meets

whom is crucial for understanding who marries who, and who should marry

whom instead.

We applied the model to the U.S. marriage market to demonstrate its

relevance, but our model is well suited to study a host of real-life matching

markets where agents have limited time and ability to quickly evaluate the

relative merits of potential partners. A number of markets ranging from labor

markets to education and health care provide examples of markets where

equilibrium matches between superior and inferior types are prevalent. Our

model can be a useful tool for analyzing these markets.

Furthermore, our model describes markets where the degree of central-

ization is fairly low. In many two-sided market models a platform acts both

as a coordination device and as a mechanism to transfer utility. Our model

can be used to study the optimal degree of centralization and the social effi-

ciency of pricing schemes in these markets. We view both the empirical study

of matching markets, and the optimal design of centralization in two-sided

search environments as exciting areas of future research.
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NOT FOR PUBLICATION

Appendix A: (In) efficiency of equilibrium

To evaluate the efficiency of the equilibrium, we compare the solution of

the decentralized problem to a social planner’s solution. We assume that

the social planner maximizes the total payoff, which is a utilitarian welfare

function. To achieve a social optimum, the planner can choose the strategies

of males and females. If there were no search costs, the planner would always

choose to match each male with the female that produces the highest output.

The socially optimal strategies of males would be infinitely precise.

To study the constrained efficient allocation we impose on the social plan-

ner the same costs of search that we place on males and females. Thus, the

social planner maximizes the following welfare function:

W = max
px(y),qy(x)

F∑
x=1

M∑
y=1

Φxypx (y) qy (x)−
F∑
x=1

cx (κx (px (y)))−
M∑
y=1

cy (κy (qy (x)))

subject to (1-2) and to the constraints that px (y) and qy (x) are well-defined

probability distributions.

Under the assumption of increasing and convex cost functions, the social

welfare function is concave in the strategies of males and females. Hence,

first-order conditions are necessary and sufficient conditions for a maximum.

Rearranging and substituting out Lagrange multipliers, we arrive at the fol-

lowing characterization of the social planner’s allocation:
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pox (y) = exp

(
Φxyq

o
y (x)

θx

)
/
M∑
y′=1

exp

(
Φxy′q

o
y′ (x)

θx

)
,

qoy (x) = exp

(
Φxyp

o
x (y)

θy

)
/

F∑
x′=1

exp

(
Φx′yp

o
x′ (y)

θy

)
. (5)

The structure of the social planner’s solution is very similar to the struc-

ture of the decentralized equilibrium given by (3). From a female’s perspec-

tive, the only difference between the two strategies is that the probability of

targeting a male depends on the social gain from a match rather than on her

private gain. Notice that the same difference holds from the perspective of a

male. Thus, it is socially optimal for both females and males to consider the

total payoff, while in the decentralized equilibrium they consider only their

private payoffs.

In our model, additional search effort exerted by an individual male or

female has a positive externality on the whole matching market. For instance,

when a male chooses to increase his search effort, he can better locate his

preferable matches. As a consequence, the females he targets will benefit

(through an increase in the personal matching rate) and the females he does

not target will also be better off as his more targeted strategy will help them

exclude him from their search (through a decrease in the personal matching

rate). Nevertheless, in this environment agents can not appropriate all the

social benefits (the output of a match) they provide to society when increasing

their search effort. They only get a fraction of the payoff. This failure of

the market to fully compensate both females and males with their social

marginal products leads to under-supply of search effort by both sides in the

decentralized equilibrium.

Because the social gain is always the sum of private gains, there is no fea-
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sible way of splitting the payoff such that it implements the social optimum.

When θ is finite and positive, a socially optimal equilibrium has to satisfy

the following conditions simultaneously:

εxy = Φxy, ηxy = Φxy.

In the presence of heterogeneity, these optimality conditions can hold in

equilibrium only if the total payoff is zero, as private gains have to add up

to the total payoff, εxy + ηxy = Φxy. Therefore, we have just proven the

following theorem:

Theorem 3. The matching equilibrium is socially inefficient for any split of

the payoff if all of the following hold:

1) cost functions are increasing and convex;

2) Φxy > 0 for some (x, y);

3) Φxy 6= Φxy′ for some x, y and y′;

4) Φxy 6= Φx′y for some y, x and x′;

5) 0 < ∂cx(κx)
∂κx

∣∣∣
p∗x

= θx <∞;

6) 0 < ∂cy(κy)

∂κy

∣∣∣
q∗y

= θy <∞.

Proof. The proof proceeds in 3 steps.

Step 1. Under the assumption of increasing convex cost functions, both

individual payoff functions and the social welfare function are concave in the

strategies of males and females. Hence, first-order conditions are necessary

and sufficient conditions for a maximum.

Step 2. We denote by CEFOC the first-order conditions of the decen-

tralized equilibrium and by POFOC the first-order conditions of the social

planner. In formulae:

POFOCpx(y): Φxy q̃y (x)− ∂cx(κ̃x)
∂κ̃x

∣∣∣
p̃x(y)

(
ln p̃x(y)

1/M
+ 1
)
− λ̃x = 0
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POFOCqy(x): Φxyp̃x (y)− ∂cy(κ̃y)

∂κ̃y

∣∣∣
q̃y(x)

(
ln q̃y(x)

1/F
+ 1
)
− λ̃y = 0

CEFOCpx(y): εxyqy (x)− ∂cx(κx)
∂κx

∣∣∣
px(y)

(
ln px(y)

1/M
+ 1
)
− λx = 0

CEFOCqy(x): ηxypx (y)− ∂cy(κy)

∂κy

∣∣∣
qy(x)

(
ln qy(x)

1/F
+ 1
)
− λy = 0

For the equilibrium to be socially efficient we need to have the following:

p̃x (y) = px (y) for all x, y

q̃y (x) = qy (x) for all x, y

Step 3. By contradiction, imagine that the two conditions above hold.

Then, by construction,

∂cy (κ̃y)

∂κ̃y

∣∣∣∣
q̃y(x)

=
∂cy (κy)

∂κy

∣∣∣∣
qy(x)

= ay

and
∂cx (κ̃x)

∂κ̃x

∣∣∣∣
p̃x(y)

=
∂cx (κx)

∂κx

∣∣∣∣
px(y)

= ax.

Denote marginal cost by ay and ax respectively. It then follows that:

Φxyp̃x (y)− λ̃y =
∂cy (κ̃y)

∂κ̃y

∣∣∣∣
q̃y(x)

(
ln
q̃y (x)

1/M
+ 1

)
=
∂cy (κy)

∂κy

∣∣∣∣
qy(x)

(
ln
qy (x)

1/M
+ 1

)
= ηxypx (y)− λy

i.e. Φxyp̃x (y) − λ̃y = ηxypx (y) − λy for all x and y. We can use the

first-order conditions of males to derive the formulas for λy and λ̃y:

(i) F exp
(

1 + λ̃y
ay

)
=

F∑
x=1

exp
(

Φxypx(y)

ay

)
41



(ii) F exp
(

1 + λy
ay

)
=

F∑
x=1

exp
(
ηxy(x)px(y)

ay

)
(iii) (Φxy − ηxy) px (y) = λ̃y − λy for all x

Jointly (i) (ii) and (iii) imply:

F∑
x′=1

exp

(
Φx′ypx′ (y)

af

)
F∑

x′=1

exp

(
ηx′ypx′ (y)

ay

) =
exp

(
Φxypx(y)

ay

)
exp

(
ηxypx(y)

ay

) for all x

Hence,

exp(Φxypx(y))

exp(ηxypx(y))
=

exp(Φx′ypx′ (y))
exp(ηx′ypx′ (y))

for all x and x′.

Therefore, either:

a) Φxy = ηxy for all x or

b) Φx′y = Φx′′y and ηx′y = ηx′′y for all x′ and x′′;

Similarly from females’ first-order conditions it follows that either :

c) Φxy = εxy for all y or

d) Φxy′ = Φxy′′ and εx′y = εx′′y for all y′ and y′′

Cases b) and d) have been ruled out by the assumptions of the theorem.

Cases a) and b) jointly imply that εxy = ηxy = Φxy = εxy + ηxy which leads

to a contradiction εxy = ηxy = Φxy = 0.

The first two conditions are self-explanatory; the case when all poten-

tial matches yield zero payoffs is a trivial case of no gains from matching.

Conditions 5 and 6 state that marginal costs of reducing noise have to be

finite and positive in the neighborhood of the equilibrium. When θ is zero,
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the best equilibrium of the assignment model is socially optimal. When θ

is very high, the random matching outcome is the best possible outcome.

For all intermediate values of marginal costs, the decentralized equilibrium

is socially inefficient.

Conditions 3 and 4 together require heterogeneity to be two-sided. If

heterogeneity is one-sided, i.e. condition 3 or condition 4 is violated, then

the allocation of intentions towards the homogeneous side of the market will

be uniform. In this case, search becomes one-sided and equilibrium alloca-

tions are efficient contingent on the actively searching side appropriating 100

percent of the payoff.20

One notable property of the equilibrium is that, by considering only frac-

tions of the total payoff when choosing their strategies, males and females

place lower probabilities on pursuing their best matches. This implies that

in equilibrium, probability distributions of males and females are more dis-

persed and the number of matches is lower than is socially optimal.

The inefficiency that arises in the two-sided model can in principle be

corrected by a central planner. This can be done by promising both males

and females that they will receive the entire payoff of each match and then

by collecting lump-sum taxes from both sides of the market to cover the costs

of the program. Nevertheless, to do so, the planner himself would need to

acquire extensive knowledge about the distribution of the payoffs, which is

costly. We leave this point for future research.

20See Appendix B for a version of the model with one-sided heterogeneity.
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Appendix B: One-sided model

Here we consider a one-sided model where females are searching for males

who are heterogeneous in type and females face a search cost. We assume

that there is no heterogeneity on the female side of the market. As such the

probability that a male reciprocates the intentions of a female is given by

qy. The strategy of a female remains px (y). Like before a female’s cost of

searching is given by cx (κx). Female x chooses a strategy px (y) to maximize

her expected income flow:

Yx = max
px(y)

M∑
y=1

εxypx (y) qy − cx (κx)

A female receives her payoff in a match with male y conditional on match-

ing with that male. She also incurs a cost that depends on search effort:

κx =
M∑
y=1

px (y) ln
px (y)

1/M
(6)

where the female’s strategy must satisfy
M∑
y=1

px (y) = 1 and px (y) ≥ 0 for all

y.

Definition 2. A matching equilibrium of the one-sided matching model is a

set of strategies of females, {px (y)}Nx=1, which solve their optimization prob-

lems.

Theorem 4. If the cost functions are non-decreasing and convex, the one-

sided matching model has a unique equilibrium.

Proof. The payoffs of all females are continuous in their strategies. They are

also concave in these strategies when cost functions are (weakly) increasing

and convex. Hence, each problem has a unique solution.
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When in addition the cost functions are differentiable, it is easy to verify

that first-order conditions are necessary and sufficient conditions for equilib-

rium. Rearranging the first order conditions for the female, we obtain:

p∗x (y) = exp

(
εxyqy
θx

)
/
M∑
y′=1

exp

(
εxy′qy′

θx

)
. (7)

The equilibrium condition (7) has an intuitive interpretation. It predicts

that the higher is the female’s expected gain from matching with a male,

the higher is the probability placed on locating that male. Thus, males are

naturally sorted in each female’s strategy by probabilities of contacting those

males.

Efficiency To study the constrained efficient allocation we impose upon

the social planner the same constraints that we place on females. Thus, the

social planner maximizes the following welfare function:

W =
F∑
x=1

M∑
y=1

Φxypx (y) qy −
F∑
x=1

cx (κx)

subject to (6) and to the constraint that the px (y)’s are well-defined probabil-

ity distributions. Under the assumption of increasing convex cost functions,

the social welfare function is concave in the strategies of females. Hence,

first-order conditions are sufficient conditions for a maximum. Rearranging

we arrive at the following characterization of the social planner’s allocation:

pox (y) = exp

(
Φxyqy
θx

)
/

M∑
y′=1

exp

(
Φxy′qy
θx

)
. (8)

Agsain, the structure of the social planner’s solution is very similar to the

structure of the decentralized equilibrium. The only difference between the

centralized and decentralized equilibrium strategies is that the probability of
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locating a male depends on the social gain from a match rather than on the

private gain. Thus, it is socially optimal to consider the whole expected payoff

when determining the socially optimal strategies, while in the decentralized

equilibrium females only consider their private gains. To decentralize the

socially optimal outcome the planner needs to give all of the payoff to the

females, εxy = Φxy, effectively assigning them a share of 1. Note that, if the

planner could choose the probability that a male reciprocates a female, qy, he

would also set it to 1. When search costs are absent, the equilibrium of the

model is socially optimal. When costs are very high, the random matching

outcome is the best possible outcome. For all intermediate values of costs,

the decentralized equilibrium is constrained efficient contingent on the female

receiving the whole output of the match.
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Appendix C: Repeated two-sided model

Here we extend the two-sided matching model to a repeated setting. Follow-

ing Adachi (2003) we assume that at the moment that male y and female

x meet, each of them has an additional decision to make. Each agent may

choose to form a match and receive the corresponding share of the surplus,

or refuse to form a match and wait for a better potential partner in future

periods if their continuation value is higher than the utility from matching

with the proposed partner. The continuation value is assumed to be simply

the expected utility of matching in the future discounted at the rate ρ, which

is the patience parameter. In the Adachi model the case ρ = 1 represented

a frictionless case which implied that agents could wait for their preferred

match indifinitely at no time cost to them. Notice, that our one-shot model

represents the opposite case of ρ = 0.

We denote vx the continuation value of female x and wy the continuation

value of male y. Each agent chooses her strategy and pays the cost of search

before the game starts, and then makes a sequence of draws from the chosen

distribution. Matched pairs of agents are replaced by their copies in the

search process. The time-0 problems of the agents are like before:

Yx =
M∑
y=1

EUx (y) qy (x) px (y)−θx

(
M∑
y=1

px (y) ln
px (y)

1/M

)
+λx

(
1−

M∑
y=1

px (y)

)
,

Yy =
F∑
x=1

EUy (x) px (y) qy (x)−θy

(
F∑
x=1

qy (x) ln
qy (x)

1/F

)
+λy

(
1−

F∑
x=1

qy (x)

)
.

The continuation values are defined as the solutions to the Bellman pro-

grams:

vx = ρ
M∑
y=1

EUx (y) qy (x) px (y) + ρ

(
1−

M∑
y=1

qy (x) px (y)

)
vx,
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wy = ρ

F∑
x=1

EUy (x) px (y) qy (x) + ρ

(
1−

F∑
x=1

px (y) qy (x)

)
wy.

and the expected utilities from meeting are either equal to match utilities

if both partners agree to a match, or to continuation values if they do not

reach an agreement:

EUx (y) = vx + (ηxy − vx) I (ηxy ≥ vx) I (εxy ≥ wy) ,

EUy (x) = wy + (εxy − wy) I (ηxy ≥ vx) I (εxy ≥ wy) .

An equilibrium of the model is a set of strategies {px (y)}Fx=1 , {qy (x)}My=1,

reservation values {vx}Fx=1 , {wy}
M
y=1, and expected utilities {EUx (y)}Fx=1,

{EUy (x)}My=1 that jointly solve the problems of the agents and satisfy the sys-

tem of equations above. Since the maximization problems are well-defined,

the first-order conditions are still necessary conditions and must be satisfied

in equilibrium. However, because the remaining functions are continuous,

but not everywhere differentiable, the model may have multiple equilibria

for many different combinations of parameters and it is hard to establish

definitive results regarding uniqueness.

So far, this model explicitly postulates non-transferable utility, but it can

easily be extended to the case of transferable utility. Specifically, the TU

case allows for redistributing the surplus in the cases when joint surplus of

the match excees the sum of continuation values of the agents. Therefore,

the last two equations are replaced in the TU case by:

EUx (y) = vx +
(
η′xy − vx

)
I (ηxy + εxy ≥ vx + wy) ,

EUy (x) = wy +
(
ε′xy − wy

)
I (ηxy + εxy ≥ vx + wy) .

where the utilities adjusted for the payments are defined as:

η′xy = vx +
ηxy
Φxy

(ηxy + εxy − vx − wy) ,
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ε′xy = wy +
εxy
Φxy

(ηxy + εxy − vx − wy) .

Note that in the one-shot model of the main text the TU case and the

NTU case are identical as the continuation values are zero. In Figure 7

below we illustrate, using a simple payoff structure that exhibits vertical

preferences for 3 males and 3 females, the regions of the parameter space

(θ, ρ) in which the equilibrium is non-unique (shaded), as well as the number

of pairs of types that are matched in equilibrium with non-zero probability.

The case with 3 pairs represents one-to-one matching, while the case with 9

pairs implies that all possible pairings are observed.

Figure 7: Number and types of equilibria depending on parameters
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