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Abstract

We propose a parsimonious matching model where a person’s choice of whom
to meet endogenizes the degree of randomness in matching. The analysis high-
lights the interaction between a productive motive, driven by the surplus at-
tainable in a match, and a strategic motive, driven by reciprocity of interest
of potential matches. We find that the interaction between these two motives
differs with preferences—vertical versus horizontal—and that this interaction im-
plies that preferences recovered using our model can look markedly different from
those recovered using a model where the degree of randomness is not endogenous.
We illustrate these results using data on the U.S. marriage market and show that
the model can rationalize the finding of aspirational dating.
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1 Introduction

When searching for a match in the dating or marriage market, circumstances can influ-

ence whom you meet, but individuals’ choices matter as well. As a result, the empirical

literature has shown that matching is neither purely random nor perfectly assortative.1

In this paper, we propose a parsimonious way to model the choice of whom to meet

that endogenizes the degree of randomness in the matching process and show that the

model can be used to estimate underlying preferences. Furthermore, we show that the

preferences recovered using our model can look markedly different from those recovered

using a model where the degree of randomness is not endogenous.

Finally, while our model has a multitude of applications beyond the marriage market,

we present one example for which our model is particularly empirically relevant. Bruch

and Newman (2018) find that when searching for a match, individuals pursue partners

who are “out of their league” in some characteristics, and we show that this is a behavior

that derives naturally from our environment.

We blend the stochastic discrete choice literature with the frictionless matching

environment of Becker (1973) with two-sided heterogeneity and assume that, on both

sides of the market, individual types of agents are characterized by multidimensional

attributes. Even though agents know the distribution and their preferences over types,

they do not know where to find a particular type. To do so, they decide how much

effort they want to exert to locate a particular partner by trading off the cost of search

with the payoff they can achieve if successful in finding their desired match.

An agent chooses whom to contact in a probabilistic way, and the strategies cho-

sen are discrete probability distributions over types. Each element of the distribution

represents the probability with which an agent will target (i.e., contact) each poten-

tial match based on the agent’s expected payoff. Exerting more search effort, which

results in a higher search cost, allows agents to spot a particular type more accurately.

Given the discrete nature of the probability distributions, we model the search cost as

proportional to the distance between an uninformed—uniform—strategy, where every

1See the survey by Chiapori and Salanie (2015).
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type has the same probability of being contacted and the distribution that is chosen by

the agent.2

The optimal probability distribution representing an agent’s contacting strategy

balances two motives: the productive and the strategic. The productive motive pushes

the agent to pursue the potential match that gives the agent the highest payoff. The

strategic motive pushes the agent to pursue the potential match that is more likely

to reciprocate interest. Thus, people act strategically not only when deciding whether

to form a match or wait for a better option (like in Eeckhout (1999)), but also when

choosing whom to contact.

The interaction between the productive and the strategic motives determines the

meeting rates in the model. The relative strength of the two motives depends on the

search cost. When exerting effort to find the best partner is not very costly, it is easy

for agents to locate their preferred types accurately, and reciprocity of interest is the

paramount determinant of who meets whom: The strategic motive dominates.

When exerting search effort is costly, agents will not be able to locate their preferred

types with accuracy, so the likelihood of contacting someone else increases. In this case,

payoffs become the driving force behind who meets whom. In the unique equilibrium,

every agent’s strategy is to target the partner that would yield the highest payoff: The

productive motive dominates the strategic motive.

The equilibrium is generally inefficient. Two externalities prevent the competitive

equilibrium from achieving the social optimum. The first is a positive externality.

If an agent increases her search effort, not only does she increase the probability of

finding a match, but she also generates an incentive for others to increase their search

effort, which can increase the quality of matches. Since the agent is not compensated

for this additional effort, she fails to internalize this gain. The second externality is

negative. When the productive motive drives optimal individual strategies, there is

more congestion because competition increases for types targeted with higher intensity,

undermining matching probability. Although the equilibrium is generally inefficient,

2We borrow our cost specification from the literature on discrete choice under information frictions.
See Cheremukhin et al. (2015) and Matejka and McKay (2015).
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it is possible for the two externalities to offset each other to achieve efficiency in the

competitive equilibrium.

The model can be used for empirical identification of agents’ preferences. In par-

ticular, it can identify whether agents’ preferences are vertical—attraction is based on

a commonly agreed upon ranking—or horizontal—people are attracted to agents with

similar characteristics.3 The existing literature finds it hard to distinguish between

these cases empirically.4 Both cases lead to identical assortative stable matching in the

frictionless case. In contrast, the equilibrium matching rates predicted by our model

differ markedly for these two cases. When preferences are horizontal, the strategic and

productive motives pull agents in the same direction, as similar types both get the

highest payoff from each other and their interests are also more likely to be mutual.

In this case, a stochastic version of assortative matching is preserved in equilibrium

and the shapes of the observed matching rate and the underlying payoff function are

similar.

However, in the case of vertical preferences, there is common agreement on the

ranking of agents and everybody would like to chase a particular type but there would

be a lower probability of reciprocation. As a result, in this case the productive and

the strategic motives pull in opposite directions. The productive motive will encourage

agents to target their preferred type, and the strategic motive will encourage them to

diversify to increase the chance of forming a match. This case gives rise to a novel

equilibrium pattern that resembles neither positive nor negative assortative matching.

We call it a mixing equilibrium.5 This type of equilibrium rationalizes the behavior

observed by Bruch and Newman (2018) in online dating where so-called aspirational

dating, or “reaching up the desirability ladder,” is documented. Such behavior—and

sorting in equilibrium—implies that there can be a large difference between the shape

of the observed matching rate and the underlying payoff function (preferences).

Our model is not the first one where the shape of the matching rate differs from the

shape of the underlying payoff function. This difference arises in models that have a

3See Banerjee et al. (2013) and references therein.
4See Hitsch et al. (2010) and related studies.
5Our taxonomy of equilibria in this case follows that of Burdett and Coles (1999).
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strategic motive (see Eeckhout (1999), Shimer and Smith (2000), Chade (2001), Adachi

(2003), and Eeckhout and Kircher (2010) among many others). However, our model

is the first that can rationalize specific patterns of strategic behavior such as reaching

up the desirability ladder. What makes our model different is the endogenous source

of randomness in the matching equilibrium, unlike in the existing literature where

randomness is postulated.6

We provide conditions for existence, uniqueness, and efficiency of equilibrium as

well as a characterization of equilibrium sorting. Our results on equilibrium uniqueness

allow us to develop a methodology for recovering agents’ preferences using only data

on aggregate matching rates.

We find that the model does a very good job rationalizing the observed aggregate

matching rates in the U.S. marriage market based on education, race, income, and

age. Furthermore, we show that due to the presence of the strategic motive—for which

relative importance is determined endogenously—the degree of horizontality of the re-

covered payoff function can be different from that recovered using models in which

there is no strategic component or the relative importance of this motive is built in

ad hoc. Finally, the resulting strategies—who targets whom—are consistent with the

desirability estimates of Bruch and Newman (2018) derived from online dating data.

The paper proceeds as follows: Section 2 describes the model and Section 3 derives

the theoretical results. We develop an empirical methodology for recovering preferences

and apply it to the U.S. marriage market data in Section 4. Section 5 states some final

remarks.

Related literature

Our paper effectively blends two sources of randomness used in the literature. The

first source is a search friction with uniformly random meetings and impatience, as in

Shimer and Smith (2000). The second approach introduces unobserved characteristics

6Existing models cannot explain reaching up the desirability ladder because they either postulate
random search, where contacts are uniformly drawn from the pool of searchers, or directed search,
where an assortative matching outcome ensures that agents match partners of similar rank.
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as a tractable way of accounting for the deviations of the data from the stark predictions

of the frictionless model, as in Choo and Siow (2006) and Galichon and Salanie (2012).

We introduce a search friction into the meeting process by endogenizing agents’ choices

of whom to contact. We build on the discrete choice rational inattention literature—i.e.,

Cheremukhin, Popova, and Tutino (2015) and Matejka and McKay (2015)—that derives

multinomial logit decision rules as a consequence of cognitive constraints that capture

limits to processing information. Therefore, the equilibrium matching rates in our

model have a multinomial logit form similar to that in Galichon and Salanie (2012).

Unlike Galichon and Salanie, the equilibrium of our model features strong interactions

between agents’ contact rates driven entirely by their choices, rather than by some

unobserved characteristics with fixed distributions.

The search and matching literature has seen multiple attempts to produce interme-

diate degrees of randomness with which agents meet their best matches. In particular,

Menzio (2007) and Lester (2011) nest directed search and random matching to generate

outcomes with an intermediate degree of randomness.7 Our paper produces equilibrium

outcomes in between uniform random matching and the frictionless assignment, endoge-

nously, without nesting these two frameworks.

Also note that although the directed search literature, such as Eeckhout and Kircher

(2010) and Shimer (2005), technically involves a choice of whom to meet, the choice is

degenerate—directed by signals from the other side. See Chade, Eeckhout, and Smith

(2017) for a thorough summary of this literature.

2 Model

We build on the frictionless matching environment of Becker (1973), where males and

females are heterogeneous in their type and simultaneously search for a match. Both

males and females know the distribution and their preferences over types on the other

side of the market, but there is noise—agents cannot locate potential partners with

certainty. However, they can pay a search cost to help locate them more accurately.

7Also, see Yang’s (2013) model of “targeted” search that assumes random search within perfectly
distinguishable market segments.
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We model this by assuming that each agent chooses a discrete probability distribu-

tion over types. Each element of this distribution reflects the likelihood of contacting a

particular agent on the other side. A more targeted search, or a probability distribution

that is more concentrated on a particular group of agents (or agent) is associated with

a higher cost, as the agent needs to exert more effort to locate a particular person more

accurately.

2.1 Population and agents

The economy contains a large, finite number of individual agents: females whose types

are indexed by x ∈ {1, ..., F} and males whose types are indexed by y ∈ {1, ...,M} . We

denote by µx the number of females of type x and by µy the number of males of type

y. Identities of females of type x are indexed by i ∈ {1, ..., µx} , and identities of males

of type y are indexed by j ∈ {1, ..., µy}. We think of females and males characterized

by a multidimensional set of attributes (e.g., income, age, education, hobbies). For

example, the profile of a female of type x′ that includes her education, income, and

race, among other characteristics, makes her distinct from another female of type x′′

with, e.g., the same race but different education and income levels. Note that types x

and y are unranked indices that aggregate all attributes.

2.2 Actions

When seeking to form a match, both females and males are aware of the number of

agents of each type and the characteristics of their preferred types on the other side of

the market. They face a noisy search process where they are uncertain about how to

locate their preferred partner. In this environment, each agent’s action is a probability

distribution over agents on the other side of the market. Since the number of potential

partners is finite, the strategy of each agent is a discrete probability distribution.

Let px,i (y, j) be the probability that a female i of type x targets a male j of type

y. Similarly, we denote by qy,j (x, i) the probability that a male j of type y targets a

female i of type x.
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Figure 1: Strategies of Males and Females

The set of actions s ∈ S is given by the cartesian product of the sets of strategies

of females px,i (y, j) ∈ Sx,i and males qy,j (x, i) ∈ Sy,j, where

Sx,i =

px,i (y, j) ∈ R
(
M∑
y=1

µy

)
: px,i (y, j) ≥ 0,

M∑
y=1

µy∑
j=1

px,i (y, j) ≤ 1

 ,

Sy,j =

qy,j (x, i) ∈ R

(
F∑
x=1

µx

)
: qy,j (x, i) ≥ 0,

F∑
x=1

µx∑
i=1

qy,j (x, i) ≤ 1

 .

Figure 1 illustrates the strategies of males and females. Consider a female i = 1 of

type x = 1. The solid arrows show the probability p1,1 (y, j) she assigns to targeting

a male j of each type y. Similarly, dashed arrows show the probability q1,1 (x, i) that

a male j = 1 of type y = 1 assigns to targeting a female i of type x. Once these are

selected, both males and females make one draw from their respective distributions to

determine which individual they will contact.

We make the following assumption on the strategies of individual agents:

A.1 Individual strategies are non-cooperative within and across types.

Assumption A.1 states that an individual agent chooses her strategy taking as given

the actions of the other agents on both her side and the opposite side of the market.8

8Think, for example, about a dating website. When an agent joins the site, there are many members
of the different types, and the agent joining thinks that her strategy of searching and contacting
potential matches has no effect on the strategies of fellow female or male members.
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2.3 Payoffs

A match between any female of type x and any male of type y generates a payoff

(surplus) Φxy. Note that we do not place any restrictions on the shape of the payoff

function. If a male and a female match, the payoff is split between them. We normalize

the outside option of both to zero. We denote the payoff appropriated by the female

εxy and the payoff appropriated by the male ηxy such that Φxy = εxy + ηxy. The payoff

and the split generated by any potential (x, y) match are exogenous and known ex-ante

and are independent of their identities i and j, respectively.9

Agents form a match if they meet according to the meeting technology (see Sub-

section 2.5) and each agent (weakly) benefits from forming a match; i.e., each agent’s

payoff is non-negative. Since a negative payoff corresponds to absence of a match, we

make the following assumption on the payoffs:

A.2 The payoffs are non-negative:

Φxy ≥ 0, εxy ≥ 0, ηxy ≥ 0.

2.4 Costs of search

When searching for a partner, both types of agents face a noisy search process. In

particular, we postulate that individuals cannot perfectly locate potential candidates

with preferred characteristics on the other side of the market. Reducing the noise to

locate a potential partner more accurately is costly: it involves a careful analysis of the

profiles of potential matches, with considerable effort in sorting through the multifaceted

attributes of each candidate. When seeking to form a match, agents rationally weigh

costs and benefits of targeting the type characteristics that result in a suitable match.

A female rationally chooses her strategy px,i (y, j) by balancing the costs and benefits

of targeting a potential match. A strategy px,i (y, j) that is more concentrated on a

particular male j of type y affords her a higher probability to be matched with her

9As we discuss at the beginning of Section 3, the fact that fundamentals such as payoffs and costs
are identity-independent will allow us to later drop the indexes i and j.
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preferred male. However, it requires more effort to sort through profiles of all the males

in the market to locate her desired match and exclude the others.

We assume that agents enter the search process with a uniform prior of whom

to target, p̃x,i (y, j) = 1/
M∑
y=1

µy and q̃y,j (x, i) = 1/
F∑
x=1

µx. Choosing a more targeted

strategy implies a larger distance between the chosen strategy and the uniform prior

and is associated with a higher search effort. A natural way to introduce this feature

into our model is the Kullback-Leibler divergence (relative entropy),10 which provides

a convenient way of quantifying the distance between any two distributions, including

discrete distributions as in our model. We assume that the search effort of female i of

type x is defined as follows:

κx,i =
M∑
y=1

µy∑
j=1

px,i (y, j) ln
px,i (y, j)

p̃x,i (y, j)
. (1)

We assume that the search costs cx,i (κx,i) are a function of the search effort κx,i.

Note that κx,i is increasing in the distance between a uniform distribution over males

and the chosen strategy, px,i (y, j). If an agent does not want to exert any search effort,

she can choose a uniform distribution over types and meet males randomly. As she

chooses a more targeted strategy, the distance between the uniform distribution and

her strategy px,i(y, j) grows, increasing search effort κx,i and the overall cost of search.

By increasing search effort, agents bring down uncertainty about locating a prospective

match, which allows them to target their better matches more accurately.

Likewise, a male’s cost of search cy,j (κy,j) is a function of the search effort defined

as

κy,j =
F∑
x=1

µx∑
i=1

qy,j (x, i) ln
qy,j (x, i)

q̃y,j (x, i)
. (2)

Furthermore, we assume the following:

10In the model of information frictions used in the rational inattention literature, κx represents the
relative entropy between a uniform prior and the posterior strategy. This definition is a special case of
Shannon’s channel capacity, where information structure is the only choice variable (See Thomas and
Cover (1991), Chapter 2). See also Cheremukhin et al. (2015) for an application to stochastic discrete
choice with information costs.
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A.3 The search costs of agents cx (κ) and cy (κ) are strictly increasing, twice continu-

ously differentiable and (weakly) convex functions of search effort.

As a special case, consider a linear cost of search. Then, the total costs of search for a

female i of type x are given by cx,i = θxκx,i and for a male j of type y by cy,j = θyκy,j,

where θx ≥ 0 and θy ≥ 0 are the marginal costs of search.

2.5 Meeting technology

The meeting rate depends on the strategies of each agent, px,i (y, j) and qy,j (x, i), and

a congestion function φ
(
{px,i′ (y, j′) , qy,j′ (x, i′)}i′,j′ , µx, µy

)
, which depends in some

general way on the strategies of all other agents as well as the number of agents of each

type. Given this, the total number of matches formed between females of type x and

males of type y is given by

Mx,y =

µx∑
i=1

µy∑
j=1

px,i (y, j) qy,j (x, i)φ
(
{px,i′ (y, j′) , qy,j′ (x, i′)}i′∈{1,...,µx},j′∈{1,...,µy} , µx, µy

)
.

We make the following assumption on the structure of the congestion function:

A.4 The congestion function is twice continuously differentiable in each p and q.

We introduce this congestion function following Shimer and Smith (2001) and Mortensen

(1982), who assume a linear search technology. Note that if φ (...) = 1, then a match

takes place if and only if there is mutual coincidence of interests; i.e., both agents draw

each other out of their respective distribution of interests. By introducing this con-

gestion function we are allowing for matches to depend in some general way on both

an agent’s search intensity for a specific agent (p and q) and on the number of agents

taking part.11

Note that when setting up the congestion function we implicitly assume that there

are no direct inter-type congestion externalities. However, our model still features

strong indirect equilibrium interactions between the strategies of agents that work akin

11Note that here search intensity refers to how concentrated the distribution of interests of an agent
is. A higher search intensity results in assigning higher probability to one or several agents within an
agent’s distribution of interests.
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to inter-type congestion by attracting or deterring agents. We come back to this point

in Subsection 3.1.

Given the above, the meeting rate faced by a male of type y conditional on targeting

a female of type x takes on the form

Px,i (y, j) = px,i (y, j)φ
(
{px,i′ (y, j′) , qy,j′ (x, i′)}i′,j′ , µx, µy

)
,

and, similarly, the meeting rate faced by a female of type x conditional on targeting a

male of type y is

Qy,j (x, i) = qy,j (x, i)φ
(
{px,i′ (y, j′) , qy,j′ (x, i′)}i′,j′ , µx, µy

)
.

Since each individual agent is “small” compared with the population of agents of

his type, we assume the following:

A.5 Agents take the meeting rates they face as given, disregarding the dependence of

the congestion function on agents’ own search intensities.12

2.6 Equilibrium

Both males and females maximize the expected value of their payoffs net of the search

costs. For a female i of type x, the problem is

Yx,i = max
px,i(y,j)∈Sx,i

M∑
y=1

µy∑
j=1

εxyQy,j (x, i) px,i (y, j)− cx (κx,i (px,i (y, j))) (3)

for all i ∈ {1, ..., µx}, x ∈ {1, ..., F}, where the meeting rates Qy,j (x, i) are taken as

given.

Likewise, a male j of type y solves

Yy,j = max
qy,j(x,i)∈Sy,j

F∑
x=1

µx∑
i=1

ηxyPx,i (y, j) qy,j (x, i)− cy (κy,j (qy,j (x, i))) (4)

for all j ∈ {1, ..., µy}, y ∈ {1, ...,M}, where the meeting rates Px,i (y, j) are taken as

given. The above expressions allow for a precise definition of the equilibrium:

12Intuitively, going back to the dating website example, A.5 states that individual members take the
technology behind the interface of the matching website as given and they do not consider how their
own strategies may affect the meeting rates they face.
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Definition 1. A matching equilibrium is a set of admissible strategies for females,

{px,i (y, j) ∈ Sx,i}x∈{1,...,F},i∈{1,...,µx}, males, {qy,j (x, i) ∈ Sy,j}y∈{1,...,M},j∈{1,...,µy}, and meet-

ing rates Px,i (y, j) and Qy,j (x, i), such that the strategies solve the problems in (3) and

in (4) for each individual male and female given the meeting rates, which are consistent

with the strategies of the agents.

3 Results

Note that, given the assumptions made about the surplus and the meeting technology,

all agents of the same type are identical ex-ante, and as long as their problems are

well defined, we assume that identical agents choose identical actions.13 Therefore,

px,i (y, j) = px,i′ (y, j
′) and qy,j (x, i) = qy,j′ (x, i

′) for all i 6= i′ and j 6= j′. This allows

us to drop the index on individual identities i and j and rewrite the problems of the

agents as follows:

Yx = max
px(y)∈Sy

M∑
y=1

µyεxyQy (x) px (y)− cx

(
M∑
y=1

µypx (y) ln

(
px (y)

M∑
y=1

µy

))
, (5)

Yy = max
qy(x)∈Sy

F∑
x=1

µxηxyPx (y) qy (x)− cy

(
F∑
x=1

µxqy (x) ln

(
qy (x)

F∑
x=1

µx

))
, (6)

where meeting rates are defined as Px (y) = px (y)φxy, Qy (x) = qy (x)φxy, with φxy =

φ (px (y) , qy (x) , µx, µy) to simplify notation, and admissible strategies satisfy

Sx =

{
px (y) ∈ RM : px (y) ≥ 0,

M∑
y=1

µypx (y) ≤ 1

}
,

Sy =

{
qy (x) ∈ RF : qy (x) ≥ 0,

F∑
x=1

µxqy (x) ≤ 1

}
.

13This assumption is similar in spirit to the anonymity assumption employed in Shimer (2005).
However, in our model this assumption becomes a prediction whenever the equilibrium is unique:
identical agents will rationally choose identical strategies. In cases when the congestion function
produces multiple equilibria some of those might include asymmetric strategies chosen by identical
agents. In those cases, by assumption we exclude asymmetric equilibria from consideration.
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3.1 Characterization of equilibrium

We can re-write the objective functions of the agents introducing the linear constraints

on strategies via Lagrange multipliers (λx and λy). Then the first-order conditions for

optimality are

∂Yx
∂px (y)

= εxyQy (x)− ∂cx
∂κx

(
ln px (y)

M∑
y=1

µy + 1

)
− λx = 0, (7)

∂Yy
∂qy (x)

= ηxyPx (y)− ∂cy
∂κy

(
ln qy (x)

F∑
x=1

µx + 1

)
− λy = 0. (8)

Since the objective functions of agents are twice continuously differentiable and concave

in their own strategies,14 first-order conditions are necessary and sufficient conditions

for equilibrium. Rearranging and substituting out Lagrange multipliers, we obtain the

following proposition:

Proposition 1. Under assumptions A.1-A.5, a matching equilibrium satisfies

p∗x (y) = exp

(
εxyq

∗
y (x)φ∗xy

∂cx/∂κx|p∗x(y)

)
/

M∑
y′=1

µy′exp

(
εxy′q

∗
y′ (x)φ∗xy′

∂cx/∂κx|p∗x(y′)

)
, (9)

q∗y (x) = exp

(
ηxyp

∗
x (y)φ∗xy

∂cy/∂κy|q∗y(x)

)
/

F∑
x′=1

µx′exp

(
ηx′yp

∗
x′ (y)φ∗x′y

∂cy/∂κy|q∗y(x′)

)
. (10)

Each agent of either type optimally chooses whom to target based on two motives:

the productive and the strategic. The productive motive leads the agent to seek out

the most desirable type on the opposite side of the market based on the payoff (given

by εxy and ηxy). The strategic motive, on the other hand, leads the agent to go after

someone who is more likely to reciprocate interest (given by q∗y and p∗x).

The congestion function, φ∗xy, can scale up or down the probability of forming a

match between individuals of type x and y and, as such, will affect optimal strategies

(we come back to this point in Subsection 3.5).

14Note that weak convexity in A.3 is enough since the search effort (κ) is strictly convex in strategies,
and that, A.3 ensures that all equilibrium strategies are strictly positive.
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The fact that agents cannot locate their preferred match with accuracy mitigates

the strategic motive by increasing uncertainty about attributes of potential matches;

this, in turn, may increase the probability of a type with less-than-desirable attributes

seeking out a partner with more desirable attributes if the surplus of the match is high

enough. As a result, higher search costs boost the productive motive.

Even though in the model there are no direct inter-type congestion externalities, it

still features strong indirect equilibrium interactions between the strategies of agents.

Because of the strategic motive, if a female x knows that a male y places a high prob-

ability on her, the best thing for her to do is to reciprocate by also placing a high

probability on y. This will in turn affect the probability a female x′ places on y; she

will make it lower.

3.2 Existence

The equilibrium of the matching model can be interpreted as a pure-strategy Nash

equilibrium of a strategic form game. The following assumption and theorem establish

conditions under which a matching equilibrium exists:

A.6 φxy + qx
∂φxy
∂qy
≥ 0 and φxy + px

∂φxy
∂px
≥ 0 for all admissible px (y) , qy (x) for all x, y.

This assumption requires that the total matching rate Mx,y = µxµypx (y) qy (x)φxy is

non-decreasing in each of the strategies px (y) and qy (x). In other words, it requires

that as agents exert more search effort—or increase their search intensity—the matching

rate increases.

Theorem 1. Under assumptions A.1- A.6, a matching equilibrium exists.

Proof. Since the strategy space is a simplex and, hence, non-empty, convex, and com-

pact set, sufficient conditions for existence of the equilibrium require us to check whether

the payoff functions are supermodular on the whole strategy space as in Tarski (1955).

Supermodularity can be proven by showing non-negativity of the off-diagonal elements

of the Hessian matrix.

Let Jxy =
[

∂Yy
∂qy

∂Yx
∂px

]
be the Jacobian matrix collecting the set of first-order

conditions for all y ∈ {1, ...,M} and all x ∈ {1, ..., F} and let Hxy be the corresponding
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Hessian matrix. To derive the Hessian matrix, note that under A.1, strategies of each

individual agent are non-cooperative, i.e., independent of the strategies of opposite

types as well as the strategies of the other agents of their own type. Note also that we

have assumed no direct inter-type congestion externalities. These assumptions produce

a Hessian matrix with a block-diagonal structure, which greatly simplifies the analysis.

For illustrative purposes, suppose that there are four players (two female and two

male types).15 Suitably rearranging the order of strategies for females and males, the

Hessian of this eight-action game can be written as

Hxy =



∂2Yx1

∂p11∂p11

∂2Yx1

∂p11∂q11
0 0 0 0 0 0

∂2Yy1

∂q11∂p11

∂2Yy1

∂q11∂q11
0 0 0 0 0 0

0 0 ∂2Yx1

∂p12∂p12

∂2Yx1

∂p12∂q12
0 0 0 0

0 0 ∂2Yy2

∂q21∂p12

∂2Yy2

∂q21∂q21
0 0 0 0

0 0 0 0 ∂2Yx2

∂p21∂p21

∂2Yx2

∂p21∂q12
0 0

0 0 0 0 ∂2Yy1

∂q12∂p21

∂2Yy1

∂q12∂q12
0 0

0 0 0 0 0 0 ∂2Yx2

∂p22∂p22

∂2Yx2

∂p22∂q22

0 0 0 0 0 0 ∂2Yy2

∂q22∂p22

∂2Yy2

∂q22∂q22


.

From this structure, it is clear that for the general case with y ∈ {1, ...,M} and

x ∈ {1, ..., F}, the off-diagonal elements of Hxy are non-negative if, simultaneously,

∂2Yx
∂px (y) ∂qy (x)

= εxy

(
φxy + qy (x)

∂φxy
∂qy (x)

)
≥ 0,

and
∂2Yy

∂qy (x) ∂px (y)
= ηxy

(
φxy + px (y)

∂φxy
∂px (y)

)
≥ 0,

which requires non-negativity of payoffs as guaranteed by assumption A.2 and that each

term in brackets is non-negative, guaranteed by A.6.

3.3 Uniqueness

For the general proof of uniqueness, we reuse the Jacobian and the Hessian from the

previous subsection. Following Rosen (1965) and Gale and Nikaido (1965), if the admis-

sible strategy space S is a convex, non-empty, compact set and the symmetric Hessian

15While the extension to the case of M male types and F female types is straightforward, the
notation for the general case is cumbersome.
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Hxy + HT
xy is negative definite for all admissible strategies, then the payoff functions

are diagonally strictly concave. We can then use the result that, if the constraints are

concave functions, if there exist interior points of the strategy space where the con-

straints are non-binding, and if the payoff functions are diagonally strictly concave for

all admissible strategies, then the game has a unique pure-strategy Nash equilibrium.

Theorem 2. Under assumptions A.1-A.6 and if the following two conditions hold for

all x and y, the matching equilibrium is unique:

a. ∂cx
∂κx

∣∣∣
p∗x(y)

1
p∗x(y)

+ ∂2cx
∂κx∂κx

∣∣∣
p∗x(y)

(
ln p∗x (y)

M∑
y=1

µy + 1

)2

> εxy

(
φ∗xy + q∗y (x)

∂φ∗xy
∂qy(x)

+ q∗y (x)
∂φ∗xy
∂px(y)

)
;

b. ∂cy
∂κy

∣∣∣
q∗y(x)

1
q∗y(x)

+ ∂2cy
∂κy∂κy

∣∣∣
q∗y(x)

(
ln q∗y (x)

F∑
x=1

µx + 1

)2

> ηxy

(
φ∗xy + p∗x (y)

∂φ∗xy
∂px(y)

+ p∗x (y)
∂φ∗xy
∂qy(x)

)
.

Proof. If the cost functions c (κ) are (weakly) increasing and (weakly) convex in κ,

then the payoffs of all males and females are continuous and concave in their strategies.

Assuming that the cost functions are twice continuously differentiable functions, the

Hessian of this game is the matrix of all second derivatives. The diagonal elements

must all be non-positive, consistent with concavity of the payoffs:

∂2Yx
∂px∂px

= εxyqy (x)
∂φxy
∂px (y)

− ∂cx
∂κx

1

px (y)
− ∂2cx
∂κx∂κx

(
ln px (y)

M∑
y=1

µy + 1

)2

≤ 0, (11)

∂2Yy
∂qy∂qy

= ηxypx (y)
∂φxy
∂qy (x)

− ∂cy
∂κy

1

qy (x)
− ∂2cy
∂κy∂κy

(
ln qy (x)

F∑
x=1

µx + 1

)2

≤ 0. (12)

The off-diagonal elements are all non-negative, as we have assumed for equilibrium

existence. The remaining cross-derivatives are all zero. To guarantee that the Hessian

is negative definite (a stronger condition), we require the following diagonal dominance

conditions:
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∣∣∣∣ ∂2Yx
∂px∂px

∣∣∣∣ > ∣∣∣∣ ∂2Yx
∂px∂qy

∣∣∣∣ ,∣∣∣∣ ∂2Yy
∂qy∂qy

∣∣∣∣ > ∣∣∣∣ ∂2Yy
∂qy∂px

∣∣∣∣ .
Diagonal dominance conditions postulate that diagonal elements of the Hessian are

larger in absolute value than the sum of off-diagonal elements, which in turn guarantees

that the Hessian of the game is negative definite. When the cost functions are linear

(see Section 2.4), these conditions simplify to

θx > εxypx (y)

(
φxy + qy (x)

∂φxy
∂qy (x)

+ qy (x)
∂φxy
∂px (y)

)
,

θy > ηxyqy (x)

(
φxy + px (y)

∂φxy
∂px (y)

+ px (y)
∂φxy
∂qy (x)

)
.

While Rosen’s version requires that diagonal dominance conditions hold globally for

all admissible strategies, which is very stringent, the theorem could be relaxed to require

diagonal dominance to be satisfied only along the equilibrium path. For this we note

that, since the constraints are given by simplexes (for which the index equals 1 and every

Karush-Kuhn-Tucker point is complementary and non-degenerate), we can invoke the

generalized Poincare-Hopf index theorem of Simsek, Ozdaglar, and Acemoglu (2007),

which in this case implies that the equilibrium is unique if the Hessian is negative

definite at the equilibrium point (denoted with a star). Thus, the equilibrium is unique

if diagonal dominance conditions hold along the equilibrium path, i.e., if conditions (a)

and (b) of the theorem are satisfied.

The assumption that cost functions are increasing and convex is a natural one. The

additional diagonal dominance conditions in our case can be interpreted as implying

that the search costs should be sufficiently high for the equilibrium to be unique. If

the congestion function has negative derivatives with respect to search intensities, this

negativity enlarges the set of parameters under which the equilibrium is unique but in

the extreme could lead to non-existence.
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If diagonal dominance conditions do not hold in equilibrium, then there can be

multiple equilibria. This is a well-known outcome of the frictionless assignment model,

which is a special case of our model under search costs approaching zero and no con-

gestion. In a frictionless environment, the multiplicity of equilibria is eliminated by

requiring that the matching be “stable,” a solution concept from cooperative games

requiring that there is no profitable pairwise deviation. In our framework, checking for

pairwise deviations would require that all males know the location of all females and

vice versa. Since locating agents is costly in our model, we use the Nash equilibrium so-

lution concept, which implies that the equilibrium outcome generically does not satisfy

“stability.”

The result of Theorem 2 is intuitive. Recall that there are two motives for a female

of type x to target a male of type y: the productive and the strategic. The payoff

of a female depends on the product of the portion she appropriates from the output

of the match and the probability of reciprocation. While her private payoff does not

depend on equilibrium strategies, the strategic motive does. When the search cost, θ,

is very low, females (and males) are able to place a high probability on one type of

counter-party and exclude all others. It does not matter what portion of the payoff a

female of type x will get from a match with a male of type y if the male places a low

probability on a female of type x. In the extreme, any pairing of agents is an equilibrium

since no one has an incentive to deviate from any mutual reciprocation. The strategic

motive dominates and multiplicity of equilibria is a natural outcome. As the search

costs go to zero, targeting strategies become more and more precise. In the limit, in

every equilibrium each female places a unit probability on a particular type of male and

that type of male responds by placing a unit probability on that type of female. Each

equilibrium of this kind implements a matching of the classical assignment problem,

but as mentioned earlier, not all of them are stable.

As θ increases, probability distributions become less precise, as it is increasingly

costly to target a particular counterparty. That is, the search costs dampen the strategic

motive and the productive motive plays a bigger role. At some threshold level of

θ, the strategic motive is dampened enough that all agents will choose probabilities
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primarily seeking a match with a higher payoff. This level of costs is characterized by

the diagonal dominance conditions of Theorem 2. Agents require the strategic motive,

characterized by the off-diagonal element of the Hessian of the game, to be lower than

the productive motive, captured by the diagonal element. Above the threshold, the

unique equilibrium has the property that each agent places a higher probability on

matching with a counterparty who promises a higher payoff; i.e., the productive motive

dominates. When search costs go to infinity, optimal strategies of males and females

approach a uniform distribution. This unique equilibrium implements the standard

uniform random matching assumption extensively used in the literature. Thus, the

frictionless assignment model and the random matching model are special cases of our

targeted search model, when θ is either very low or very high.

3.4 Efficiency

To evaluate the efficiency of the equilibrium, we compare the solution of the decen-

tralized problem to a social planner’s solution. We assume that the social planner

maximizes the total payoff, which is a utilitarian welfare function. To achieve a social

optimum, the planner can choose the strategies of males and females. If there were

no search costs, the planner would always choose to match each male with the female

that produces the highest output. The socially optimal strategies of agents would be

infinitely precise.

To study the constrained efficient allocation, we impose on the social planner the

same costs of search that are faced by the agents. Let the payoff functions be defined

as in (3) and (4). Then, the social planner maximizes the following welfare function:

W = max
px(y)∈Sx,qy(x)∈Sy

M∑
y=1

µyYy +
F∑
x=1

µxYx.

We can re-write the objective functions of the agents introducing the linear con-

straints on strategies via Lagrange multipliers (λx and λy). Then the first-order condi-

tions for optimality are
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∂W

∂px (y)
= Φxyqy (x)

(
φxy + px (y)

∂φxy
∂px (y)

)
− ∂cx
∂κx

(
ln px (y)

M∑
y=1

µy + 1

)
− λx = 0,

(13)

∂W

∂qy (x)
= Φxypx (y)

(
φxy + qy (x)

∂φxy
∂qy (x)

)
− ∂cy
∂κy

(
ln qy (x)

F∑
x=1

µx + 1

)
−λy = 0. (14)

As we have established previously, the objective functions of agents are twice contin-

uously differentiable and concave in all the strategies. Hence, first-order conditions of

the welfare function with respect to strategies of the agents are necessary and suffi-

cient conditions for an efficient allocation. Rearranging and substituting out Lagrange

multipliers, we obtain the following proposition:

Proposition 2. Under assumptions A.1-A.5, the constrained efficient allocation satis-

fies

p∗x (y) =

exp

(
Φxyqoy(x)

(
φoxy+pox(y)

∂φoxy
∂pox(y)

)
∂cx/∂κx|pox(y)

)
M∑
y′=1

µy′exp

(
Φxy′q

o
y′ (x)

(
φo
xy′+p

o
x(y′)

∂φoxy

∂pox(y′)

)
∂cx/∂κx|p∗x(y′)

) , (15)

q∗y (x) =

exp

(
Φxypox(y)

(
φoxy+qoy(x)

∂φoxy
∂qoy(x)

)
∂cy/∂κy |q∗y(x)

)
F∑

x′=1

µx′exp

Φx′yp
o
x′ (y)

(
φo
x′y+qoy(x′)

∂φo
x′y

∂qoy(x′)

)
∂cy/∂κy |q∗y(x′)

 . (16)

The structure of the social planner’s solution is very similar to the structure of the

decentralized equilibrium. By comparing constrained efficient allocations with the equi-

librium allocations from Proposition 1, it becomes clear that competitive equilibria are

generally inefficient. From a female’s perspective, the difference is that, while the equi-

librium strategy depends on her private gain εxy, the socially optimal strategy depends

on the social gain Φxy adjusted for the effect her strategy has on congestion, px
φxy

∂φxy
∂px

.
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The same difference holds from a male’s perspective. Thus, it is socially optimal for

both females and males to consider the total payoff adjusted for congestion, while in

the decentralized equilibrium they consider only their private payoffs. Inefficiency may

arise if an agent increases her search intensity (by choosing a more concentrated strat-

egy), because it generates a positive externality for other agents. Due to the strategic

motive, when an agent exerts more effort to better target preferred individuals, it not

only increases the agent’s probability of being matched but also increases the search

effort that other agents have to exert. Agents do not take into account this effect, since

their strategy depends solely on the private gain as opposed to the social one.16

While the decentralized equilibrium is generally inefficient, there are conditions that

can be imposed on the congestion function under which the competitive equilibrium is

socially efficient. The following theorem provides such conditions:

Theorem 3. Under assumptions A.1-A.6, the matching equilibrium is inefficient unless

1. males and females are homogeneous or

2. the congestion function takes on the form

φxy (px (y) , qy (x) , µx, µy) = 1

p
αxy
x (y)q

1−αxy
y (x)

Ψ (µx, µy)

and the parameter αxy equals the surplus split for agents of types x and y:

ηxy = αxyΦxy, εxy = (1− αxy) Φxy, for all x, y.

The proof is in Appendix A. The theorem states that, with a constant-returns-to-

scale technology for the meeting function, if the parameter of the congestion function

is equal to the share of the surplus obtained by the partner, the equilibrium is efficient.

The aggregate matching function for types x and y becomes a constant-returns-to-scale

Cobb-Douglas function of the search intensities, with power parameters equal to the

surplus split:

Mx,y = µxµypx (y) qy (x)φxy = p
εxy
Φxy
x q

ηxy
Φxy
y µxµyΨ (µx, µy) . (17)

16This result is reminiscent of the holdup problem where there are goods with positive externalities
and the producer undersupplies the good if not fully compensated by the marginal social benefits that
an additional unit of the good would provide to society. The kind of inefficiency we obtain is similar
to that in Mortensen (1982). Mortensen’s proposed solution of giving the whole surplus to the partner
that initiated the meeting would fail in our environment because both the female and the male initiate
the meeting and also because the gains are not easily transferable.
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It should be noted that, to create a fully constant-returns-to-scale matching function,

we assume Ψ (µx, µy) = 1. Indeed, assuming high costs of search, it follows that px (y) =

1/ (Mµy), qy (x) = 1/ (Fµy); therefore,

ΣxΣyMx,y ∼MFµxµyp
α
xq

1−α
y ∼MFµxµy

(
1

Mµy

)α(
1

Fµx

)1−α

= (Fµx)
α (Mµy)

1−α .

The intuition for the efficiency result is reminiscent of the Hosios (1990) condition,

as our model features a positive and a negative externality. The positive externality

stems from the fact that an individual with a more targeted strategy incentivizes other

people in the market to exert more effort if they want to find a match. This externality

is not internalized because the individual surplus differs from the collective surplus. The

negative externality stems from the increased congestion in the submarkets (i.e., types)

targeted with higher intensity. This externality is not internalized since the meeting

rates are given. When the parameter of the congestion function equals the share of the

surplus that the agent receives from a match, the two externalities balance out exactly,

producing a constrained efficient equilibrium allocation.

An important property of our meeting technology is the assumption of no inter-type

congestion externalities, i.e., that strategies of females of type x′ 6= x and males of type

y′ 6= y do not directly affect the meeting rates of females of type x with males of type

y. This assumption on the congestion function is important for the social efficiency

of competitive equilibrium. If on the contrary the inter-type congestion externalities

were present as in Shimer and Smith (2001), then we would, like them, conclude that

equilibria are generically inefficient for any functional form of the congestion function.

3.5 Uniqueness under a particular meeting technology

There is at least one particular congestion function that produces a unique equilib-

rium—regardless of the value of the search costs—that is socially efficient and for which

the aggregate matching function features constant returns to scale.

A.7 The congestion function is given by φxy = p
−αxy
x q

−βxy
y .

The following theorem places additional restrictions on the congestion function and

surplus split to achieve uniqueness in the decentralized economy:
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Theorem 4. Under assumptions A.1-A.7, the matching equilibrium is unique if

a. the congestion function is the same for all pairs of types:

for all x ∈ {1, ..., F} , y ∈ {1, ...,M}, we have αxy = α, βxy = β;

b. the surplus split is the same for all pairs of types:

for all x, x′ ∈ {1, ..., F}, y, y′ ∈ {1, ...,M} , we have
εxy
Φxy

=
εx′y
Φx′y

=
εxy′

Φxy′
, ηxy

Φxy
=

ηx′y
Φx′y

=
ηxy′

Φxy′
; and

c. the coefficients of the congestion function satisfy

α > 0, β > 0, α + β ≥ 1, min (α, β) < 1.

The proof is in Appendix A. Note that the conditions that deliver uniqueness of

the decentralized equilibrium do not impose any additional restrictions on the costs of

search so long as they are positive, increasing, and convex.

To conclude, Theorem 4 is the final step in establishing that, if the congestion func-

tion has a special functional form φxy (px, qy, µx, µy) = (px)
−α (qy)

−(1−α), the surplus is

split proportionally as εxy
Φxy

= 1−α, and the parameter α is the same for all pairs of types

(x, y), then the competitive equilibrium exists, is unique, and is constrained efficient for

any positive search costs. Moreover, the aggregate matching function exhibits constant

returns to scale. These properties will prove extremely useful for empirical analysis.

3.6 Sorting: 2× 2 case

In this subsection we study the sorting properties of the equilibria that the model yields

in the 2× 2 case. Consider the case where there are F = 2 types of females (high and

low), M = 2 types of males (high and low), and µ individuals of each type. Consider

a symmetric payoff function Φxy = 2

[
u 1
1 d

]
, where the first row represents the high-

type female, the second row the low-type female, the left column the high-type male,

and the right column the low-type male. This structure implies that matches between

high-type women and low-type men get the same total payoff as matches between low-

type women and high-type men.

Following results from the previous section, assume that upon matching, the sur-

plus is split evenly between males and females and the special congestion function
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φ (p, q, µ) = (pq)−1/2 guarantees both uniqueness and efficiency of equilibria. Assume

that search costs are linear in effort and that the marginal costs are the same for all

agents, θx = θy = θ.

Under these assumptions, the problems of the high-type male and high-type female

are identical, as are the problems of the low types. Denote the probability that a

high-type female places on a high-type male by ph (h), and denote the probability that

a low-type female places on a high-type male by pl (h). These two choice variables

determine all the remaining equilibrium objects, due to symmetry and the requirement

that probability distributions sum up to 1. Using the necessary conditions for equilibria

from Proposition 1, we can simplify further to obtain the following two equations:

µph (h)

(
1 + exp

(
1

θ

(√
µpl (h)

1− µph (h)
− u

)))
= 1, (18)

µpl (h)

(
1 + exp

(
1

θ

(
d−

√
1− µph (h)

µpl (h)

)))
= 1. (19)

These two equations represent the “best responses” of high-type and low-type agents

to each others’ strategies. We illustrate the shapes of these strategies in Figure 2.17

When in equilibrium high types choose ph (h) > 1/(2µ), i.e., target high types, and

low types choose pl (h) < 1/(2µ), i.e., target low types, we call this positive assortative

matching (PAM). All PAM equilibria are located in Quadrant IV of Figure 2. Similarly,

when high types choose to target low types and low types choose to target high types,

we call this negative assortative matching (NAM). All NAM equilibria are located in

Quadrant II of Figure 2. The remaining equilibria, where everybody targets high types

(Quadrant I) or everybody targets low types (Quadrant III), we call mixing equilibria.

In what follows we establish conditions under which each type of equilibria prevails,

in two extreme cases, when marginal costs of search approach zero and when they

approach infinity. In summary, we show that if preferences are vertical—i.e., everyone

gets a higher payoff if matched with a high type—the equilibrium can be PAM, mixing,

or NAM depending on the cardinal properties of the surplus in the zero-cost limit, and

17For parameters µ = 1, θ = e−0.4, d = 0.83, u = 1.34. An interactive version of this graph may be
accessed by the reader at https://www.desmos.com/calculator/yvplpyoesg.
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Figure 2: Best Responses and Types of Equilibria.

the equilibrium is mixing in the high-cost limit. If preferences are horizontal—i.e., each

type gets a higher payoff if matched with someone of their same type—the equilibrium

is PAM for all positive finite values of costs.

Proposition 3. Sorting properties:

1. If u > 1 > d. As θ → 0:

a. PAM: if u > 1
d
, then µph (h)→ 1, µpl (h)→ 0;

b. Mixing: if
√

2 ≤ u < 1
d
, then µph (h)→ 1− u−2, µpl (h)→ 1;

c. NAM: if u < 1
d
, u <

√
2, then µph (h)→ 1− u−2, µpl (h)→ 1;

2. PAM: If u > 1, d > 1. As θ → 0, µph (h)→ 1, µpl (h)→ 0.

3. As θ →∞, µph (h)→ 1
2
, µpl (h)→ 1

2
(random matching):

a. Mixing: If u > 1 > d, then µph (h) > 1
2
, µpl (h) > 1

2
;

b. PAM: If u > 1, d > 1, then µph (h) > 1
2
, µpl (h) < 1

2
.

The proof is in Appendix A. A common result in the search and matching litera-

ture is that matching is positively assortative if the surplus function has supermodular
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properties. Note that in the 2 × 2 example the surplus is supermodular if u + d > 2

and log-supermodular if ud > 1. The first condition seems unrelated to our sorting

results, but the second indeed determines the sorting pattern. In fact, it follows from

Proposition 3 that, in this specific 2×2 case, whenever the surplus is log-supermodular,

we get a PAM equilibrium for θ → 0. However, we can also get a mixing equilibrium

for high-enough costs when the payoffs are log-supermodular (see Proposition 3.3a).

In the zero-cost limit we also obtain NAM if ud < 1, u <
√

2, and we get the

new type of mixing equilibrium for intermediate values of parameters in between PAM

and NAM equilibria. This suggests that when approaching the frictionless limit, the

sorting patterns might be similar in spirit to those obtained under frictionless assign-

ment (Becker (1973)) or in frictional models (Shimer and Smith (2000), Smith (2006)).

Although, we have not been able to prove in general that equilibria exhibit PAM in the

zero-cost limit when preferences are log-supermodular, we have not been able to find

a counter-example to this statement. Nevertheless, we find that for non-limit cases,

log-supermodularity is not a useful guide for predicting sorting in equilibrium. Instead,

mixing-type equilibria become increasingly common with the increase in the number of

types and for non-zero search costs. We discuss how we evaluate the types of equilibria

and the shapes of surplus in the next section.

There also seems to be no direct link between log-supermodularity and the horizon-

tality or verticality of preferences. In the 2 × 2 case, preferences are horizontal when

u > 1, d > 1 and vertical when u > 1, d < 1. In the zero-cost limit, as long as ud > 1,

we obtain PAM regardless of whether preferences are horizontal (d > 1) or vertical

(1 > d > 1
u
).

4 Empirical Application

In this section we explain how the model can be used to recover underlying preferences;

we also illustrate how, due to the presence of the strategic motive for which relative

importance is determined endogenously, the degree of horizontality of the recovered

payoff function can be different from that estimated using models where there is no
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strategic component or where the relative importance of this motive is built-in ad hoc.

We use these results to check for examples of the mixing equilibrium found in our

theoretical framework.

To this purpose, in Subsection 4.1 we describe our identification strategy; in Sub-

section 4.2 we define a formal way of measuring both the degree of horizontality of

preferences and the degree of assortativeness of matching; and in Subsection 4.3 we

show the results of the calibration exercise, applying results from Subsection 4.2. In

Subsection 4.4 we present a stark example for which our model is particularly empir-

ically relevant. Bruch and Newman (2018) find that when searching for a partner,

individuals pursue partners who are above their league in some characteristics. We

show that this is a behavior that derives naturally from our environment.

4.1 Identification

To calibrate our model, we need data on contact rates or on the number of matches. In

what follows, we describe how to recover underlying preferences using matching data

(see Appendix C for the methodology using contact rates).18

One can observe matching rates—Mx,y— the numbers of men and women married

to each other in a given period of time, as well as the number of men and women µx and

µy that remained single over that period. In this case, the data contain observations

with M × F degrees of freedom. Of course, there are not enough restrictions in the

data to identify payoffs in a non-transferable utility case. But assuming transferable

utility with a predefined split of the joint payoff between males and females, Φxy, the

unobserved payoff functions also have M × F independent parameters. In this case,

it is possible to identify the payoff function from just matching rates. Taking this

into consideration, for our empirical methodology, we make the following identifying

assumptions:

I.1 Search costs are identical across females and males, θx = θy = θ.

18The contact rate data used in Hitsch et al. (2010) and in Bruch and Newman (2018) is confidential,
and we have not been able to get access to it.
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I.2 Search costs are normalized to θ = 1.

I.3 Payoff Φxy is split equally between males and females; i.e., εxy = 1
2
Φxy.

I.4 The congestion function is given by φxy = 1/
√
px (y) qy (x).

Assumptions I.1-I.2 allow us to focus on identifying the ratio Φxy/θ as the object en-

tering equilibrium conditions since the payoff and marginal cost cannot be identified

separately. Assumptions I.3-I.4 guarantee existence, uniqueness, and efficiency of equi-

librium, as we have shown in Section 3.19 Under these assumptions we do not need

to worry about multiplicity of equilibria. Equilibrium uniqueness implies a one-to-one

mapping from the shape of the payoff function Φxy to matching rates Mx,y conditional

on the number of agents µx, µy.

Building on these identifying assumptions, we write down a loss function and mini-

mize it to obtain the surplus. The loss function is defined as follows:

L (Mx,y|Φxy, µx, µy) = −
∑

x∈{1,...,F}

∑
y∈{1,...,M}

Mx,y

(
lnM∗

x,y (Φxy, µx, µy)− lnMx,y

)
,

where M∗
x,y (Φxy) is the equilibrium matching rate produced by the model for surplus

Φxy, according to equation (17).

The loss function is minimized when the model matches the data perfectly; i.e.,

M∗
x,y (Φxy, µx, µy) =Mx,y, and the minimized loss function yields Φ̂xy = arg minΦxy L .

In order to find the global minimum in a high-dimensional space, we initialize the

algorithm at a large number of different initial points and then compare the points to

which the search algorithm converged. See Appendix B for a derivation of a closed-form

solution and a discussion of identification in the 2× 2 case and more generally.

The identifying assumptions that we make, by guaranteeing uniqueness of equilibria,

make the calibration procedure very well-behaved. We find that under our identifying

assumptions the computational difficulty in recovering the parameters of the model is

the same as that of solving for the matching equilibrium.

19Note that I.4 incorporates the assumption of no direct inter-type congestion externalities, i.e.,
that the meeting rate between women of type x and men of type y is unaffected by the strategies
of other types. Assuming external effects generically leads to non-uniqueness with different equilibria
exhibiting different sorting patterns, thus making it hard to identify preferences.
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4.2 Vertical versus horizontal preferences

In the 2×2 case of the model, it is straightforward to identify its sorting properties and

whether preferences are vertical or horizontal. However, for a large number of types of

males and females, we need to define how we measure the verticality/horizontality of

preferences and how we measure the degree of sorting that characterizes the competitive

equilibrium of the model.

We define preferences to be vertical if every type’s best match is the same type,

and we define preferences to be horizontal if every type’s best match is a different type.

For preferences that are neither strictly vertical nor strictly horizontal, we can define

a “horizontality index” (HI). Let ωx =
∣∣∣{arg maxy (εxy)}x∈{1,...,F}

∣∣∣ ∈ {1, ...,M} be the

number of different types of males who are best matches for at least one type of female.

Similarly, let ωy =
∣∣∣{arg maxx (ηxy)}y∈{1,...,M}

∣∣∣ ∈ {1, ..., F} be the number of different

types of females who are best matches for at least one type of male. Then the HI is

just a normalized average of the two numbers:

H (εxy, ηxy) = (ωx + ωy − 2) / (M + F − 2) .

When preferences are vertical, the HI takes a value of zero. When preferences are

horizontal, the HI takes a value of 1.

Likewise, we can define an “assortativeness index” (AI) to characterize sorting in

equilibrium. Let us denote by Pxy = [px (y)] the matrix of all female strategies and by

Qyx = [qy (x)] the matrix of male strategies. Then let ξx =
∣∣∣{arg maxy (Pxy)}x∈{1,...,F}

∣∣∣ ∈
{1, ...,M} be the number of different types of males that females target, and let ξy =∣∣∣{arg maxx (Qyx)}y∈{1,...,M}

∣∣∣ ∈ {1, ..., F} be the number of different types of females that

males target. Then the AI of an equilibrium is

A (Pxy,Qyx) = (ξx + ξy − 2) / (M + F − 2) .

For an assortative equilibrium, the AI equals 1, while for a mixing equilibrium the AI

equals zero.

The conceptual difference between the HI and the AI is as follows. The HI charac-

terizes ex-ante preferences of individuals (the shape of the underlying payoff function),
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that is, whom they target based on the productive motive and abstracting from the

strategic one. The AI characterizes the ex-post realization of who matches whom, that

is, whom males and females target when taking into account both the productive and

the strategic motives.

Note that when preferences are horizontal, the productive and the strategic motives

pull in the same direction, meaning that the productive motive will drive individuals

to target those with whom the payoff is higher and the strategic motive will drive

individuals to target those same people because there is no competition to match with

them, given that everyone is better off with a different type. However, when preferences

are vertical, the productive motive drives everyone to target the same type—with whom

they would get a higher payoff—but the strategic motive will pull them in a different

direction to maximize the chance of reciprocation.

Because of this dynamic, when preferences are vertical, the strategic motive makes

it such that by looking at the shape of the observed matching rate one cannot directly

infer the shape of the underlying payoff function. In a model of unobserved character-

istics—like Choo and Siow (2006)—by construction, the shape of the matching rate is

the same as the shape of the underlying preferences (there is no strategic motive). To

make this point, in the empirical results subsection, we report the AI and HI generated

by our model, as well as the HI calculated using the underlying preferences estimated

using the Choo and Siow model (HICS). This will illustrate how different the estimated

underlying preferences can be depending on whether the model incorporates a strategic

motive.

4.3 Empirical results

To calibrate our model, we use data on matching rates in the U.S. for the year 2012

from the Integrated Public Use Microdata Series (IPUMS).20 We take unmarried males

and females and (newly) married couples and assign both males and females to bins

corresponding to types in the model. We consider four dimensions along which males

and females evaluate each other in the marriage market: income, age, education, and

20We thank Gayle and Shephard (2015) for kindly sharing the cleaned IPUMS data with us.
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race.

An advantage of our methodology is that it allows for multidimensional charac-

teristics. This is important because younger people are likely to have lower levels of

education and lower levels of income. Therefore, one could use more-easily observable

characteristics, such as age, to screen for less-easily observable characteristics, such as

education and income. If that is indeed what is going on, we might confuse prefer-

ences for age with preferences for income and education. To identify the underlying

preferences controlling for correlations between characteristics, one needs to be able to

estimate the model using multidimensional types.21

In each case we choose the cutoffs between bins in such a way as to split the whole

sample, representative of the U.S. population, into equally sized bins to the extent

possible. We restrict our attention to adults between the ages of 21 and 40. We discard

all younger and older people from the analysis because there is a disproportionate

amount of unmarried people in these other age categories who only rarely marry. One

reason for this may be that a large fraction of them are not searching for a spouse and

are thus not participating in the marriage market. To avoid misspecification due to our

inability to observe search effort, we exclude them from our analysis. We call newly

married the couples that got married in the past 12 months.

We allow three bins for age (22, 27, and 34), three bins for income (low, medium, and

high), and two bins for education (school or college). Altogether there are 18 different

combinations of these attributes. We calibrate this multidimensional model using the

representative sample of the U.S. population for all married couples in the past year

and unmarried males and females ages 21-40 in the year 2012.

Figure 3 displays the results. There are four panels: the first two panels represent

the strategies of males and females,22 respectively, and the second two the number of

matches and the payoff function, respectively. Note that the number of matches is

observed from the data and the strategies and payoff are recovered from the model

using the identifying assumptions from Subsection 4.1.

21We present the unidimensional results for income, age, education, and race in Appendix D.
22Each bar represents µxpx (y) for the females and µyqy (x) for the males and, hence,

∑
y µxpx (y) =

1,
∑

x µyqy (x) = 1.
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From the payoff function we can see that females are indifferent between 27- and

34-year-old males, but have a strong preference for high-income college-educated males.

Male preferences are more heterogeneous; however, they tend to target 27- or 34-year-

old females with a college degree and high income. Females have the same targeting

strategies as males but with less diversification.

This is an example of a mixing equilibrium as the assortativeness index is 0.32, and

preferences are vertical as the horizontality index is 0.11. Overall, desirability increases

with income and education, and partners over 25 years of age are preferred by both

males and females. This finding is consistent with our unidimensional findings (see

Appendix D) for income and education but a little different for age. This finding also

suggests that age may be serving as a signal of income and education, rather than

agents exhibiting strong preferences over age alone.

If we recover preferences using the Choo and Siow model, we would find the horizon-

tality index to be 0.41, which would point toward preferences that are much more hor-

izontal than those produced by our model. For all of our calibrations—unidimensional

or multidimensional—we conclude that preferences are close to vertical.23

4.4 People pursue partners “out of their league”

In a study about romantic courtship in online dating markets, Bruch and Newman

(2018) find that both males and females, on average, pursue partners who are 25 percent

above their own rank. In the author’s language, both males and females seem to be

“reaching up the desirability ladder,” i.e., “pursuing partners who are on average more

desirable than themselves,” and sometimes even “out of their league.”

In this subsection, we show that this behavior derives naturally from our environ-

ment.24 We adopt from Bruch and Newman (2018) the concept of desirability rank.

23This finding raised some concern for us in terms of whether this conclusion could be the result
of model misspecification. To check whether model misspecification could bias the horizontality of
preferences, we conducted a set of Monte-Carlo exercises. We find that even substantial misspecification
of the parameters governing the congestion function and the split of the surplus does not seem to bias
inference regarding the horizontality or verticality of preferences.

24Bruch and Newman reach this conclusion using disaggregated data from a dating site that they
don’t disclose. As was mentioned earlier, we only have marriage data from IPUMS. However, it is
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Figure 3: Sorting by Multidimensional Characteristics
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Making an analogy between our model and a dating website—used in Bruch and New-

man—the estimated competitive equilibrium of our model predicts the relative frequen-

cies at which different types of females would send messages to different types of males

and vice versa. We assume that each agent in the model sends an equal and fixed

number of messages to agents of the opposite sex. Following the methodology of Bruch

and Newman (2018), we use Google’s PageRank algorithm to compute the desirability

rank for each agent in our model. The algorithm ranks agents based on the number

of messages they received, weighted by the rank of the sender. We then compute the

average desirability rank for agents of each type. This methodology allows us to com-

pute a desirability index (DI) for each type and see how desirable each type’s targets

are relative to their own.

In Appendix D we show the DIs as well as the predominant target behavior of each

type when sorting by income, age, education, and race. Figures 8 to 12 in Appendix D

show the targets as well as the DIs for the results that we report here.

Based on those results, we want to see whether—in our model—individuals target

people above or below their own DI (above or below their “league”). To this end we

compute the following league indices (LIs) for females and males: For females,

LIx =
M∑
y=1

µypx(y)DIy −DIx,

where DIx is the DI of a female of type x. For males,

LIy =
F∑
x=1

µxqy(x)DIx −DIy,

where DIy is the DI of a male of type y.

A value of zero means that individuals target, on average, people in their own league,

a negative value means that they target people below their league, and a positive value

means that they target people above their league. Table 1 shows averages over types

when sorting by different characteristics. When sorting by education, on average, males

natural to believe that if individuals have this behavior when looking for someone to date, they will
have a similar behavior when looking for someone to marry.
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Males Females Average

Education 0.27 0.05 0.17
Race 0.19 -0.03 0.09

Income 0.21 0.14 0.18
Age 0.21 0.10 0.16

Inc x Age x Educ 0.30 0.26 0.28

Table 1: Individuals target someone above their “league” (league index)

target females who are 27% above their league, while females target males who are only

5% above. When sorting by race, on average, males target females who are 19% above

their league, while females target males who are 3% below their league. When sorting

by income, males target females who are 21% above their league while females target

males who are 14% above. When sorting by age, on average, males overshoot by 21%

and females by 10%.

When we look at the results sorting by multidimensional characteristics, we see that

our model predicts that people pursue partners who are, on average, 28% above their

own “league.”

Our results are very close to those in Bruch and Newman (2018), who find that

individuals pursue others who are on average 25% above their league. In our model

this arises because, since agents know that they and others cannot locate their preferred

type with accuracy, there is some positive probability that someone above their league

will reciprocate their interest.

5 Final Remarks

In this paper we propose a model of probabilistic choice by agents where the degree of

randomness in matching is endogenous because deciding whom to contact and locating

the best partners involves search effort. Agents’ optimal targeting strategy resulting

from the model balances a productive motive whereby agents contact potential partners

who will render a higher payoff and a strategic motive that drives agents toward poten-

tial partners who are more likely to reciprocate their interest. We find that accounting
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for the interaction between strategic and productive considerations aids identification of

underlying preferences, while ignoring this interaction may result in misleading impli-

cations regarding the degree of mismatch and hence the welfare losses associated with

it. Understanding who meets whom is crucial for understanding who marries whom

and who should marry whom instead.

The model we present in this paper is deliberately static for simplicity and clarity

of exposition. Nevertheless, we believe that complications arising in a repeated setting

due to additional frictions associated with time costs of search are empirically relevant.

We describe an extension of our model to a repeated setting with time costs of search

in Appendix E and discuss its empirical relevance. Another important extension that

we do not touch is the dynamic change in the number of searching agents due to match

formation and due to search while married. We leave the study of a fully dynamic

repeated setting for future research.

We develop an empirical methodology and apply it to aggregate data on the U.S.

marriage market. Aggregate data allow identification of preferences only under strin-

gent assumptions on the division of surplus between men and women. To relax these

assumptions it would be useful to estimate our model using data on contact rates, such

as in Bruch and Newman (2018) or Hitsch et al. (2010). Another interesting line of

enquiry would be to combine data on matching rates and contact rates to study the

properties of the meeting technology.

Even though our application focuses on the U.S. marriage market, our model is

well-suited to study a host of real-life matching markets where the potential matches

are numerous and diverse. Matching in labor, education, and health care are just a few

examples of markets in which agents need to exert considerable effort to screen long

lists of heterogenous candidates. Moreover, all these markets display match formation

between superior and inferior types that can be rationalized by our model and evaluated

with our methodology.

Finally, our model describes markets where the degree of centralization is fairly low.

In many two-sided market models, a platform acts both as a coordination device and

as a mechanism to transfer utility. Our model can be used to study the optimal degree
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of centralization and the social efficiency of pricing schemes in these markets. We view

both the empirical study of matching markets and the optimal design of centralization

in two-sided search environments as exciting areas of future research.
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Appendix A: Omitted Proofs

A.1 Proof of Theorem 3

Proof. The proof proceeds in three steps:

Step 1

As we have already discussed, under the assumption of increasing convex cost func-

tions, both individual payoff functions and the social welfare function are concave in

the strategies of males and females. Hence, first-order conditions are necessary and

sufficient conditions for a maximum.

Step 2

We denote by CE the first-order conditions of the decentralized equilibrium and by

PO the first-order conditions of the social planner. In formulae,

POpx(y): Φxy q̃y (x)
(
φ̃xy + p̃x (y) ∂φ̃xy

∂p̃x(y)

)
− ∂cx

∂κ̃x

(
ln p̃x (y)

M∑
y=1

µy + 1

)
= λ̃x

POqy(x): Φxyp̃x (y)
(
φ̃xy + q̃y (x) ∂φ̃xy

∂q̃y(x)

)
− ∂cy

∂κ̃y

(
ln q̃y (x)

F∑
x=1

µx + 1

)
= λ̃y

CEpx(y): εxyqy (x)φxy − ∂cx
∂κx

(
ln px (y)

M∑
y=1

µy + 1

)
= λx

CEqy(x): ηxypx (y)φxy − ∂cy
∂κy

(
ln qy (x)

F∑
x=1

µx + 1

)
= λy.

For the equilibrium to be socially efficient, we need to have the following:

p̃x (y) = px (y) for all x, y

q̃y (x) = qy (x) for all x, y.

Step 3.

Imagine that the two conditions above hold. Then, by construction,

∂cy (κ̃y)

∂κ̃y

∣∣∣∣
q̃y(x)

=
∂cy (κy)

∂κy

∣∣∣∣
qy(x)

= ay,

∂cx (κ̃x)

∂κ̃x

∣∣∣∣
p̃x(y)

=
∂cx (κx)

∂κx

∣∣∣∣
px(y)

= ax,
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where we denote marginal costs by ay and ax for males and females, respectively. It

then follows that

Φxyp̃x (y)

(
φ̃xy + q̃y (x)

∂φ̃xy
∂q̃y (x)

)
− λ̃y = ηxypx (y)φxy − λy,

Φxy q̃y (x)

(
φ̃xy + p̃x (y)

∂φ̃xy
∂p̃x (y)

)
− λ̃x = εxyqy (x)φxy − λx

for all x and y. We can use the first-order conditions of males to derive the formulae

for λy and λ̃y and substitute them back in. We conclude that

Φxypx (y)
(
φxy + qy (x) ∂φxy

∂qy(x)

)
− ηxypx (y)φxy =

= Φx′ypx′ (y)
(
φx′y + qy (x′)

∂φx′y
∂qy(x′)

)
− ηx′ypx′ (y)φx′y for all x and x′

Φxyqy (x)
(
φxy + px (y) ∂φxy

∂px(y)

)
− εxyqy (x)φxy =

= Φxy′qy′ (x)
(
φxy′ + px (y′)

∂φxy′

∂px(y′)

)
− εxy′qy′ (x)φxy′ for all y and y′.

Therefore, either

a. Φx′y′ = Φx′′y′ = Φx′y′′ , ηx′y′ = ηx′′y′ = ηx′y′′ and εx′y′ = εx′′y′ = εx′y′′ for all x′,x′′,

y′ and y′′, or

b. Φxy

(
φxy + qy (x) ∂φxy

∂qy(x)

)
= ηxyφxy and Φxy

(
φxy + px (y) ∂φxy

∂px(y)

)
= εxyφxy for all

x and y.

Case a) implies that there is no heterogeneity among types, and strategies of all

agents are uniform, which indeed constitutes a socially optimal random matching equi-

librium.

Case b) would require that

qy (x)

φxy

∂φxy
∂qy (x)

=
ηxy
Φxy

− 1 = − εxy
Φxy

,

px (y)

φxy

∂φxy
∂px (y)

=
εxy
Φxy

− 1 = − ηxy
Φxy

.

This system of differential equations with respect to φ (p, q) has a unique solution of

the form

φ (px, qy, µx, µy) = p
− ηxy

Φxy
x q

− εxy
Φxy

y Ψ (µx, µy) .
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A.2 Proof of Theorem 4

Proof. To establish uniqueness, we use the univalence theorem of Gale and Nikaido

(1965), which requires the determinant of the Hessian matrix to be negative semi-

definite (i.e., the matrix H + HT to be negative definite) for all px and qy. Exploiting

the block structure of the Hessian matrix as in Theorem 1, the sufficient condition

required by Gale and Nikaido’s theorem is satisfied if

4

∣∣∣∣ ∂2Yx
∂px∂px

∣∣∣∣ ∣∣∣∣ ∂2Yy
∂qy∂qy

∣∣∣∣ > ( ∂2Yx
∂px∂qy

+
∂2Yy
∂qy∂px

)2

for all px (y) ∈ Sx, qy (x) ∈ Sy, for all y ∈ {1, ...,M} and for all x ∈ {1, ..., F}.
Let ax > 0 and ay > 0 be some scaling factors associated with the payoffs Yx and Yy,

respectively, for y ∈ {1, ...,M} and x ∈ {1, ..., F}. Taking the derivatives of the first-

order conditions with the scaling factors and substituting into the above expression, it

follows that

4axay

(
Γx − εxyqy (x)

∂φxy
∂px (y)

)(
Γy − ηxypx (y)

∂φxy
∂qy (x)

)
>

>

(
axεxy

(
φxy + qy (x)

∂φxy
∂qy (x)

)
+ ayηxy

(
φxy + px (y)

∂φxy
∂px (y)

))2

,

where

Γx =
∂cx
∂κx

1

px (y)
+

∂2cx
∂κx∂κx

(
ln px (y)

M∑
y=1

µy + 1

)2

and

Γy =
∂cy
∂κy

1

qy (x)
+

∂2cy
∂κy∂κy

(
ln qy (x)

F∑
x=1

µx + 1

)2

.

Leaving the strictly positive terms that involve search costs on the left-hand side

and moving the remaining term to the right-hand side, it follows that the Hessian is
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negative semi-definite if there exists a pair of weights (ax, ay) such that the following

quadratic expression equals zero for any admissible strategies px (y) and qy (x):(
ax

(
φx,y + qy

∂φxy
∂qy

)
εxy + ay

(
φx,y + px

∂φxy
∂px

)
ηxy

)2

−4axay
∂φxy
∂px

∂φxy
∂qy

pxqyεxyηxy = 0.

Recall that under assumption A.7, px
∂φxy
∂px

= −αxyφxy and qy
∂φxy
∂qy

= −βxyφxy. There-

fore, the quadratic form simplifies to

((1− βxy) (axφxyεxy) + (1− αxy) (ayφxyηxy))
2 − 4αxyβxy (axφxyεxy) (ayφxyηxy) = 0.

We can then define a new variable txy =
√

axεxy
ayηxy

> 0 that simplifies the quadratic

form as follows:

(1− βxy) t2xy − 2
√
αxyβxytxy + (1− αxy) = 0.

Elementary analysis of the roots of this quadratic equation shows that it has at

least one positive root if ({αxy > 0, βxy > 0, αxy + βxy ≥ 1,min (αxy, βxy) < 1}). If these

restrictions on the congestion function hold, there exists a pair of positive weights ax

and ay that solves the quadratic equation, implying positive definiteness of the block

element of the Hessian.

Note, however, that the scaling factors ax and ay are chosen for a pair of types x

and y but cannot vary depending on which pair of types are considered. Therefore,

the exact same value of txy must solve quadratic equations for all block elements of the

Hessian independent of which pair of types (x, y) we consider. Therefore, for uniqueness

we also require αxy = αxy′ = αx′y, βxy = βxy′ = βx′y,
εxy
ηxy

=
εxy′

ηxy′
=

εx′y
ηx′y

for all x′ 6= x and

y′ 6= y.

A.3 Proof of Proposition 3

Proof. Step 1. First note that combining the two equilibrium conditions (18) and (19)

one can derive

µpl(h)

1− µph(h)
=

(
1 + exp

(
1
θ

(√
µpl(h)

1−µph(h)
− u
)))

(
1 + exp

(
1
θ

(
d−

√
1−µph(h)
µpl(h)

))) 1

exp
(

1
θ

(√
µpl(h)

1−µph(h)
− u
)) . (20)
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Second, note that from equilibrium conditions it follows that µph(h) > 1
2

holds

iff u >
√

µpl(h)
1−µph(h)

and µpl(h) < 1
2

holds iff
√

1−µph(h)
µpl(h)

< d. Therefore, as long

as u >
√

µpl(h)
1−µph(h)

> 1
d
, the equilibrium is PAM. To check for consistency, taking

the limit θ → 0 of (20), we conclude that µph(h) → 1, µpl(h) → 0, µpl(h)
1−µph(h)

→

exp 1
θ

(
u−

√
µpl(h)

1−µph(h)
+
√

1−µph(h)
µpl(h)

− d
)

. For this expression to satisfy u >
√

µpl(h)
1−µph(h)

>

1
d
, it must be that u−

√
µpl(h)

1−µph(h)
+
√

1−µph(h)
µpl(h)

− d = 0; therefore,√
µpl(h)

1− µph(h)
=

1

2

(
(u− d) +

√
(u− d)2 + 4

)
,

which indeed always satisfies the condition. This proves parts 3.1a and 3.2 of the

proposition.

Step 2. Now assume vertical preferences, for instance u > 1 > d, without loss

of generality. For there to be a mixing equilibrium, it must be that µph(h) > 1
2

and µpl(h) > 1
2
, which hold iff u >

√
µpl(h)

1−µph(h)
and

√
1−µph(h)
µpl(h)

> d. As we have al-

ready shown, under u > 1
d

we obtain PAM; therefore, it must be that
√

µpl(h)
1−µph(h)

≤
u ≤ 1

d
. Taking the limit θ → 0 of (20), we conclude that µph(h) → 1, µpl(h) → 1,

µpl(h)
1−µph(h)

→ exp 1
θ

(
u−

√
µpl(h)

1−µph(h)

)
→∞, unless

√
µpl(h)

1−µph(h)
= u. In this case, µpl(h)

1−µph(h)
→

exp 1
θ

(√
µpl(h)

1−µph(h)
− u
)

+ 1→ 2, µph(h)→ 1− 1
u2 , µpl(h)→ 1. For the limiting equilib-

rium to be mixing, it must be that
√

2 ≤ u, which completes the proof of 3.1b.
Step 3. For the equilibrium to exhibit NAM, it must be that µph(h) < 1

2
and

µpl(h) > 1
2

which hold iff u <
√

µpl(h)
1−µph(h)

and
√

1−µph(h)
µpl(h)

> d. This implies u <√
µpl(h)

1−µph(h)
< 1

d
. Taking the limit θ → 0 of (20), we conclude that µph(h)→ 0, µpl(h)→

1, µpl(h)
1−µph(h)

→ 1, unless
√

µpl(h)
1−µph(h)

= u. In this case,

µpl(h)

1− µph(h)
→

(
exp

1

θ

(
u−

√
µpl(h)

1− µph(h)

)
+ 1

)
/

(
exp

1

θ

(
d−

√
1− µph(h)

µpl(h)

)
+ 1

)
→ 2.

Since µpl(h)→ 1 still, µph(h)→ 1− 1
u2 . Therefore, we obtain NAM as long as u <

√
2.

This completes the proof of 3.1c and exhausts the possible relations between d and u.

Step 4. Now, take the opposite limit θ →∞. From equilibrium conditions it follows

that µph(h) → 1
2
, µpl(h) → 1

2
, µpl(h)

1−µph(h)
→ 1. If we assume horizontal preferences,
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u > 1, 1
d
< 1, then it immediately follows that µph(h) > 1

2
, µpl(h) < 1

2
, which

implies a PAM equilibrium. If instead we assume vertical preferences, u > 1, 1
d
> 1,

then similarly it immediately follows that µph(h) > 1
2
, µpl(h) > 1

2
, which is a mixing

equilibrium. This completes the proof of 3.3.

Appendix B: Identification in the 2× 2 case

Consider again the case where there are F = 2 types of females (high and low) and

M = 2 types of males (high and low); µh, µl are the number of females of each type;

and vh, vl are the numbers of males of each type. Consider a general surplus Φxy =

2

[
Φhh Φhl

Φlh Φll

]
. Following results from Section 2.5, assume that upon matching the

surplus is split evenly between males and females and that the congestion function is

φxy = C/
√
pxqy to guarantee both uniqueness and efficiency of equilibria. Assume that

search costs are linear in effort and that the marginal costs are the same for all agents,

denoted θ. The unique efficient equilibrium of this model is fully characterized by the

set of equilibrium conditions as in Proposition 1. The matching rates are defined as

follows:

mhh = C
√
µhvh

√
ph(h)qh(h)µhvh, mhl = C

√
µhvl

√
(1− vhph(h)) ql(h)µh

mlh = C
√
µlvh

√
pl(h) (1− µhqh(h)qh(h)) vh,mll = C

√
µlvl

√
(1− vhpl(h)) (1− µhql(h)).

The “identification” question is if we observe matching rates mxy and quantities of

unmatched agents, µx, vy, what can we infer about Φxy? In the 2 × 2 case we can do

this step by step. First, consider whether we can infer px and qy. Invert the system of

equations as follows:

µhqh(h) =
m2
hh/(C2µhvh)
vhph(h)

vhpl(h) =
m2
lh/(C2µlvh)
1−µhqh(h)

=
m2
lh/(C2µlvh)

vhph(h)−m2
hh/(C

2µhvh)

µhql(h) = 1− m2
ll/(C2µlvl)
1−vhpl(h)

= 1− (vhph(h)−m2
hh/(C2µhvh))m2

ll/(C2µlvl)
vhph(h)−m2

hh/(C
2µhvh)−m2

lh/(C
2µlvh)

.

Therefore, we obtain an equation with respect to p1:

m2
hl/ (C2µhvl) = (1− vhph(h))

(
1− (vhph(h)−m2

hh/(C2µhvh))m2
ll/(C2µlvl)

vhph(h)−m2
hh/(C

2µhvh)−m2
lh/(C

2µlvh)

)
. This can be

simplified to a quadratic equation with respect to vhph(h) (changing notation from

mij/µivj by mij):
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x2C2 (C2 −m2
ll −m2

lh)−(C2 (C2 +m2
hh −m2

hl −m2
lh −m2

ll) +m2
hlm

2
lh −m2

llm
2
hh)x+

m2
hh (C2 −m2

ll −m2
hl) = 0.

This equation has two roots of the form

vhph(h) =
(C2(C2+m2

hh−m
2
hl−m

2
lh−m

2
ll)+m2

hlm
2
lh−m

2
llm

2
hh)±

√
D

2(C2−m2
ll−m

2
lh)C2

, where

D = (C2 (C2 +m2
hh −m2

hl −m2
lh −m2

ll) +m2
hlm

2
lh −m2

llm
2
hh)

2

−4 (C2 −m2
ll −m2

hl) (C2 −m2
ll −m2

lh)m
2
hhC

2.

Thus, upon knowing the matching rates and the scaling factor, we can compute all

the strategies:

µhqh(h) =
m2
hh/C

2

vhph(h)
, vhpl(h) =

m2
lh/C

2

1−
m2
hh
/C2

vhph(h)

, 1− µhql(h) =
m2
ll/C

2

1−vhpl(h)
.

This gives us a closed-form solution for the strategies conditional on matching rates.

The second step is to use the strategies px and qy to infer the surplus Φxy. From

the necessary conditions in proposition 1 we can write down the following relations (in

log form):
Φhl
θ
ql(h) C√

(1−vhph(h))
vl

ql(h)

= Φhh
θ
qh(h) C√

ph(h)qh(h)
+ ln (1−vhph(h))

vlph(h)

Φll
θ

1−µhql(h)
µl

C√
1−vhpl(h)

vl

1−µhql(h)

µl

= Φlh
θ

1−µhqh(h)
µl

C√
pl(h)

1−µhqh(h)

µl

+ ln 1−vhpl(h)
vlpl(h)

Φlh
θ
pl(h) C√

pl(h)
1−µhqh(h)

µl

= Φhh
θ
ph(h) C√

ph(h)qh(h)
+ ln 1−µhqh(h)

µlqh(h)

Φll
θ

1−vhpl(h)
vl

C√
1−vhpl(h)

vl

1−µhql(h)

µl

= Φhl
θ

1−vhph(h)
vl

C√
1−vhph(h)

vl
ql(h)

+ ln 1−µhql(h)
µlql(h)

.

This is a system of four equations and four unknowns, and the solution can be

obtained in closed form:

Φhh
θ/C

=

√
1−µhql(h)

1−vhph(h)

(
1−vhph(h)

vlql(h)
ln

1−vhph(h)

vlph(h)
+ln

1−µhql(h)

µlql(h)

)
−
√

1−vhpl(h)

1−µhql(h)

(
1−µhqh(h)

µlpl(h)
ln

1−µhqh(h)

µlqh(h)
+ln

1−vhpl(h)

vlpl(h)

)
1−µhqh(h)

µlpl(h)

√
1−vhpl(h)

1−µhql(h)

ph(h)

qh(h)
− 1−vhph(h)

vlql(h)

√
1−µhql(h)

1−vhpl(h)

qh(h)

ph(h)

Φhl
θ/C

=
√

1−vhph(h)
vlql(h)

(
Φhh
θ/C

√
qh(h)
ph(h)

+ ln 1−vhph(h)
vlph(h)

)
Φlh
θ/C

=
√

1−µhqh(h)
µlpl(h)

(
Φhh
θ/C

√
ph(h)
qh(h)

+ ln 1−µhqh(h)
µlqh(h)

)
Φll
θ/C

=
√

1−vhpl(h)
1−µhql(h)

(
Φlh
θ/C

√
1−µhqh(h)
µlpl(h)

+ ln 1−vhpl(h)
vlpl(h)

)
.

Note that both stages of the closed-form solution depend in a non-trivial way on a

scale factor C that is usually unknown and may be arbitrary. Simulations show that for

a randomly generated set of matching rates there always exists a (tiny) interval of values

47



of C ∈
[
C,C

]
for which all strategies take values in the unit interval vp, µq ∈ [0, 1] and

all surplus values Φxy are real and non-negative. Simulation results show that as the

scale factor moves along the interval, the implied surplus also scales from small values

to large values, preserving the ordinal properties of the surplus matrix along the way

but changing the proportions between elements somewhat.

This property provides an identification result: the “shape” of the payoff can be

uniquely pinned down using only the matching rates. However, closed-form solutions

can be derived only in the 2 × 2 case because the number of observed matching rates

(F ∗ M) equals the number of unknown strategies (F∗(M − 1) + M ∗ (F − 1)) and

equals the number of unobserved surplus values (F ∗M). For a larger number of types,

a closed-form solution is not possible, because there are more unknown strategies than

there are observed matching rates. However, Monte-Carlo estimation for 3 × 3 and

4×4 cases, where estimating the surplus exactly from artificial data is computationally

feasible in reasonable time, suggests that the same property of the mapping between

matching rates and surpluses holds as for the 2×2 case. For any observed or artificially

generated matching rate matrix, it is possible to find multiple surplus matrices (roughly

proportional to each other and preserving ordinal properties between elements) that

match the data exactly.

Appendix C: Calibration using contact rates

If contact rates are available from a dating website, for example, one can infer for each

type of male and female what their distributions of interests—qy (x) and px (y)— are.

Since these distributions sum to 1, the data contain observations with 2×M×F−M−F
degrees of freedom. Assuming non-transferable utility and knowledge of search costs,

these data allow the researcher to identify the shape of the payoff functions for each

type of male and female, εxy and ηxy, respectively, which have a total of 2 ×M × F
independent parameters.

Our model allows for direct identification of these unobserved preferences up to a

constant for each type by using the necessary conditions for equilibrium. Specifically,
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rearranging equations (9-10) we obtain

ln
p∗x (y)

p∗x (y′)
=
εxy
θx
q∗y (x)φ∗xy −

εxy′

θx
q∗y′ (x)φ∗xy′ ,

ln
q∗y (x)

q∗y (x′)
=
ηxy
θy
p∗x (y)φ∗xy −

ηx′y
θy

p∗x′ (y)φ∗x′y. (21)

These equations uniquely identify the best match for each type of male and female

and thus determine whether preferences are horizontal, vertical, or some mix of the

two.

Appendix D: Empirical Application

D.1 Sorting

Figure 4 displays sorting by income. We divide people into deciles, except for the

first two (5 and 15), which we bunch into one denoted by “5,” as these include only

individuals with zero income. From the payoff function we can see that the productive

motive would drive everyone to aim at someone in the highest quintile. However,

when we look at the strategies, females do primarily target males in the highest decile

but males randomize primarily among the highest four deciles and still give some non-

negligible weight to females below that. The number of matches reflects the combination

of the strategies of males and females.

For this case, the HI=0.06 and the AI=0.19. This means that preferences are clearly

vertical and the degree of assortativeness indicates a mixing equilibrium. If we recover

preferences using the Choo and Siow model, we would find HICS=0.56, which would

point toward preferences that are much more horizontal than those produced by our

model.

The results of sorting by age are shown in Figure 5. We take people between the

ages of 21 and 40 and sort them into 20 bins. From the payoff function we can see

that males prefer females between ages 27 and 31, while females prefer males between

ages 29 and 33. However, because those males and females are unlikely to reciprocate

interest, both males and females have to settle for partners closer to their own age,

49



Figure 4: Sorting by Income
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and those are the ones they end up targeting. This suggests an important role for the

strategic motive in matching by age.

For this case, the HI=0.18, indicating preferences that are more vertical towards

individuals between 27 and 31 for males and between 29 and 33 for females, and the

AI=0.61, reflecting assortative matching with a little mixing. When we calculate the

HICS we find it to be 0.74, which would be misleadingly indicative of horizontal pref-

erences according to our model.

Intuitively, sorting by age is similar to the frictionless assortative matching story

where the strategic motive is the main driving factor behind matching. This is a

clear example of preferences by age exhibiting verticality: broadly consistent with the

online dating evidence, but contrary to what a non-strategic model like Choo and

Siow would conclude. This example highlights the ability of our model to identify

vertical preferences even when the matching-rate pattern seems assortative, suggesting

horizontal preferences.

Figure 6 characterizes sorting by education. We divide people into three bins. Those

who have completed high school (S), those who have completed college (C), and those

who have a postgraduate degree (P). From the payoff function we can see that everyone

would be better off being with someone that has a postgraduate degree. However, both

males and females with less than a postgraduate degree target individuals with a college

degree. This indicates that those with a college degree settle for someone like themselves

and that those with just a high school diploma aim higher by targeting someone with

more education.

For this case both the HI and the AI equal zero, which is a clear indication of

vertical preferences that generate a mixing equilibrium, reflecting very high importance

of the strategic motive. If we were to take a model of unobserved characteristics like in

Choo and Siow (2006) and use it to recover the underlying surplus and then calculate

our HI, we would find HICS to be 1, which would indicate horizontal preferences when

according to our model they really are vertical.

Figure 7 shows sorting by race. We divide people into four bins: white (Wh),

Hispanic (Hi), black (Bl), and Asian (As). From the payoff function, we can see that
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Figure 5: Sorting by Age
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Figure 6: Sorting by Education
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everyone has a preference for a white partner, closely followed by an Asian partner.

However, from the strategies, we see that with the exception of black males and females,

everyone targets someone of their same race.

For this case, HI=0.33, pointing toward preferences that are more vertical, and

AI=1. This is another example that highlights the ability of our model to identify

vertical preferences even when the matching rate pattern seems assortative, deceptively

suggesting horizontal preferences.

Figure 7: Sorting by Race
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D.2 Desirability Indices

The middle panels plot the main target of each male and female type; in other words,

this panels show to which type males and females assign the highest probability. The

left panels show the DI of males from the perspective of females, and the right panels

show the DI of females from the perspective of males.

Figure 8 shows the results by income. Both males and females with higher income

are more desirable, and desirability falls as income goes down to the 45th decile for males

and to the 35th decile for females and increases only slightly for the lowest deciles.

Figure 9 shows the results by age. We can see that women older than 33 target

males of their same age and younger women target slightly older males, while males

older than 31 target slightly younger women and males younger than 29 target females

of their same age, with the exception of 21-year-olds. We find that between 21 and

roughly 32, desirability increases with age for males and then decreases with age. For

females it is very similar; their desirability increases with age between 21 and 31 and

then decreases with age. This result makes sense because being a single male or female

above a certain age might be considered a “red flag,” hence the non-monotonicity.

Figure 10 shows the results for education. We can see that both males and females

pursue partners out of their league, everyone targets individuals with a postgraduate

degree. Also, the DIs generated by the model show that both males and females with

a postgraduate degree are more desirable than those with a college degree and more

desirable than those with just a high school diploma.

Finally, Figure 11 shows the results by race. We can see that for both males and

females, whites are preferred, followed by Asians, Hispanics, and blacks, but every

type’s main target is of their own race.
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Figure 8: Desirability Index by Income

Figure 9: Desirability Index by Age

Figure 10: Desirability Index by Education
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Figure 11: Desirability Index by Race

Figure 12: Desirability Index Sorting by Multidimensional Characteristics

The study of matching with multidimensional attributes quickly runs into the em-

pirical problem that many pairs of types produce zero matches in equilibrium. While

our model is able to match such patterns reasonably well, the estimates imply a sub-

stantial payoff differential between acceptable matches and undesirable matches. This

differential needs to be large enough to incentivize men and women to identify the un-

desirable types and exclude them from their pool of potential contacts to avoid meeting

them. However, in reality a different mechanism is likely at work in such cases. Both
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men and women likely meet those undesirable types but reject them at the match for-

mation stage and decide to simply wait to meet a better type. To explain these cases

in a satisfactory way, in addition to cognitive costs of distinguishing between types we

need to introduce time costs into our model. To achieve that goal, in appendix E,

building on Adachi (2003) we develop a model of repeated interactions where agents

both choose whom to meet under a cognitive constraint and then form an “exclusion

set” rejecting some of the matches upon meeting. This mechanism not only allows for a

better rationalization of absence of matches between some of the types, but also affects

the overall sorting pattern. We leave the task of estimating the repeated model on

aggregate data for future research.

Appendix E: Repeated two-sided model

Here we extend the two-sided matching model to a repeated setting. Following Eeckhout

(1999) and Adachi (2003), we assume that at the moment that a male of type y and

a female of type x meet, each of them has an additional decision to make. Each agent

may choose to form a match and receive the corresponding share of the surplus or

refuse to form a match and wait for a better potential partner in future periods if their

continuation value is higher than the utility from matching with the proposed partner.

The continuation value is assumed to be simply the expected utility of matching in

the future discounted at the rate ρ, which is the patience parameter. In the Adachi

model, the case ρ = 1 represents a frictionless case, which implies that agents could wait

for their preferred match indefinitely at no time cost to them. Similarly, when agents

cannot wait and match everybody that they meet, i.e., the patience parameter ρ is set

to zero, we obtain our baseline one-shot model. In that case, if agents are nonetheless

able to perfectly distinguish among potential partners, i.e., the parameter θ approaches

zero, the model, possibly using a refinement permitting only stable matchings, also

reproduces the frictionless matching outcome.

We denote by vx the continuation value of female x and by wy the continuation value

of male y. Each agent chooses her strategy and pays the cost of search before the game
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starts and then makes a sequence of draws from the chosen distribution. Matched pairs

of agents are replaced by their copies in the search process. The time-zero problems of

the agents are like before:

max
px(y)

Yx =
M∑
y=1

µyEUx (y)Qy (x) px (y)− θx

(
M∑
y=1

µypx (y) ln

(
px (y)

M∑
y=1

µy

))
,

max
qy(x)

Yy =
F∑
x=1

µxEUy (x)Px (y) qy (x)− θy

(
F∑
x=1

µxqy (x) ln

(
qy (x)

F∑
x=1

µx

))
.

The continuation values are defined as the solutions to the Bellman programs:

vx = ρ
M∑
y=1

µyEUx (y)Qy (x) px (y) + ρ

(
1−

M∑
y=1

µyQy (x) px (y)

)
vx,

wy = ρ
F∑
x=1

µxEUy (x)Px (y) qy (x) + ρ

(
1−

F∑
x=1

µxPx (y) qy (x)

)
wy.

And the expected utilities from meeting are either equal to match utilities if both

partners agree to a match or equal to continuation values if they do not:

EUx (y) = vx + (ηxy − vx) I (ηxy ≥ vx) I (εxy ≥ wy) ,

EUy (x) = wy + (εxy − wy) I (ηxy ≥ vx) I (εxy ≥ wy) .

An equilibrium of the model is a set of strategies {px (y)}Fx=1 , {qy (x)}My=1, reserva-

tion values {vx}Fx=1 , {wy}
M
y=1, and expected utilities {EUx (y)}Fx=1, {EUy (x)}My=1 that

jointly solve the problems of the agents and satisfy the system of equations above. Since

the maximization problems are well-defined, the first-order conditions are still neces-

sary conditions and must be satisfied in equilibrium. However, because the remaining

functions are continuous, but not everywhere differentiable, the model may have multi-

ple equilibria for many different combinations of parameters and it is hard to establish

definitive results regarding uniqueness.

So far, this model explicitly postulates non-transferable utility (NTU), but it can

easily be extended to the case of transferable utility (TU). Specifically, the TU case

allows for redistributing the surplus in the cases when joint surplus of the match exceeds

the sum of the continuation values of the agents. Therefore, the last two equations are

replaced in the TU case by
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EUx (y) = vx +
(
η′xy − vx

)
I (ηxy + εxy ≥ vx + wy) ,

EUy (x) = wy +
(
ε′xy − wy

)
I (ηxy + εxy ≥ vx + wy) ,

where the utilities adjusted for the payments are defined as

η′xy = vx +
ηxy
Φxy

(ηxy + εxy − vx − wy) ,

ε′xy = wy +
εxy
Φxy

(ηxy + εxy − vx − wy) .

Note that in the one-shot model of the main text, the TU case and the NTU case are

identical because all continuation values are zero. In Figure 13, using a simple payoff

structure that exhibits vertical preferences for three males and three females and no

congestion (φ = 1), we illustrate the regions of the parameter space (θ, ρ) in which the

equilibrium is non-unique (shaded), as well as the number of pairs of types that are

matched in equilibrium with non-zero probability. The case with three pairs represents

one-to-one matching, while the case with nine pairs implies that all possible pairings

are observed. Like in the one-shot model, there is a threshold level of cognitive costs

that generates multiplicity of equilibria. There are also small islands of multiplicity

generated by the same mechanism as in the Adachi model. In the region where both

costs are relatively high, all pairs of types are matched with some frequency in the

unique equilibrium.

In Figure 14, for our 2 × 2 symmetric example from Section 2.6 with parameter

u = 1.3 and d = 0.5, we illustrate the regions of the parameter space (θ, ρ) in which

the equilibrium is non-unique (red) and has different sorting patterns. Under low pa-

tience, equilibrium is NAM for low values of search costs and mixing for high values of

search costs, as would be predicted by Proposition 3. For high patience the equilibrium

has a PAM structure due to agents choosing to reject subpar potential matches upon

meeting them and instead wait to meet their best matches. For intermediate values of

patience, there is a region of multiplicity of equilibria, where for each combination of

parameters multiple rejection/acceptance patterns can be supported by continuation

values as equilibria.
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The last example highlights that, even though under the conditions that guarantee

uniqueness of equilibria in the one-shot model the repeated model can have multiple

equilibria, the repeated model could nevertheless be successfully estimated using the

same methodology. This is because all cases of multiple equilibria are characterized by

different rejection/acceptance patterns in those equilibria. The empirically observed

pattern would always uniquely pin down the relevant equilibrium in the case of multi-

plicity. Note, however, that another potential source of multiplicity emphasized in the

literature can be due to the endogeneity of the stationary distribution of types as in

Shimer and Smith (2000).

The repeated game with patience is instructive, as it highlights two independent

sources of search frictions: the costs of waiting and the costs of distinguishing among

agents. According to Smith et al. (1999), search costs are divided into external and

internal costs. External costs include the monetary costs of searching and contacting

partners as well as the opportunity costs of the time spent searching. These costs are

captured by the parameter ρ in the repeated model. Internal costs include the mental

effort associated with the search process, sorting the incoming information, and inte-

grating it with what the agent already knows. Modeling the internal costs is the novel

feature of our model. Internal costs are captured by the parameter θ, which describes

an agent’s ability to evaluate available information, depending on intelligence, prior

knowledge, education, and training. The properties of the extended model highlight

that both internal and external costs of search are necessary to obtain outcomes where

superior agents are matched with inferior agents in equilibrium: The agents need to be

both reasonably impatient and unable to perfectly distinguish among potential part-

ners. Although the two types of frictions are quite different in nature, we find that they

reinforce each other: If agents can distinguish their best matches better, the equilibrium

likelihood of meeting is higher, which increases the continuation value of waiting, just

like an increase in patience.

This extension also highlights two distinguishing features of our model. First, it

emphasizes the difference between the choice of whom to meet, constrained by cognitive

costs, and the choice of whether to form a match or keep looking for a better one
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Figure 13: Number and Types of Equilibria Depending on Parameters, no Congestion

Figure 14: Number and Types of Equilibria Depending on Parameters, Congestion
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constrained by the physical costs. Ours is an explicit model of how agents choose whom

to meet. Second, the repeated model makes clear the source of the difference between

the TU and the NTU cases. If agents are able to reject potential partners deemed not

good enough, then it is important to know whether those potential partners can offer

a larger share of the surplus in return for forming a match. The more impatient agents

are, the smaller the difference between the TU and NTU cases. In our one-shot model,

the TU case and the NTU case are identical, as the continuation values are zero and

all matches are viable.
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