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Abstract

We study the multidimensional sorting of males and females in the U.S. mar-

riage market over the past decade using a model of targeted search. We find

strong vertical sorting on income and education, and horizontal sorting on race.

We find that women put significant effort into targeting men at the top of the

desirability scale, while men put less effort and target women with similar char-

acteristics. We find no improvement in quality of matching and no noticeable

changes in sorting patterns or individual search behavior, despite rapid improve-

ment in search technology. Finally, we find that targeted search substantially

reduces income inequality across married couples, even when compared with ran-

dom matching, by producing a large number of matches between low income and

high income individuals.
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1 Introduction

The matching process involves complex, multidimensional decision-making. Whether

we consider labor, product or marriage markets, a party needs to jointly evaluate several

characteristics of the other side of the market to find her perfect match. For instance,

in the case of the labor market, a worker may want to consider not only the salary but

also the benefits and working conditions of the jobs on offer. In the product market,

to make a purchase, a consumer may consider different characteristics of the good in

terms of quality, size and colors. Similarly, in considering a potential romantic partner,

a person takes into account different sets of socio-economic values she may wish to share

with a potential partner to form a successful marriage.

To aide the decision-making process and reduce search frictions, there have been sig-

nificant improvements in information and communication technology over time. How-

ever, these changes have not resulted in sizeable increases in the number and quality

of matches across markets. For instance, Menzio and Martellini (2020) documented

that the unemployment and vacancy rates in the labor markets have not declined much

over the past century, while Kaplan and Menzio (2015) have shown that dispersion of

prices for consumer products has not declined over the past half a century. An explana-

tion proposed by Menzio (2021) is that the decline in search frictions has been undone

by the endogenous rise in selectivity of workers and firms, consumers and producers

respectively. How plausible is this explanation and how universal is it? More specifi-

cally, has the improvement in information technologies (e.g. proliferation and growth

of matching websites) led to an increase in the quantity and quality of matches in the

marriage market?

In this paper, we argue that, rather then an increase in selectivity, the multidimen-

sional aspect of the decision-problem in matching is mostly responsible for the lack of

significant improvements in the marriage market. The complexity of sorting through

different characterisitcs of a potential partner has not changed over time, resulting in

insignificant gains in quality and quantity of matches.

This paper studies the sorting of males and females in the U.S. marriage market

over the 2008-2019 period, by analyzing rich data on U.S. marital patterns from the

American Community Survey conducted by the Census Bureau.

To fully appreciate the multidimensionality that searching for a partner entails, we
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study the data through the lens of a targeted search model developed in Cheremukhin,

Restrepo-Echavarria and Tutino (2020). The model is capable of estimating sorting

patterns and changes in search costs over time. Importantly, the model is capable of

handling the selection criteria across different characteristics of a potential partner.

The model presents three novel features that makes it uniquely suitable for the analysis

of matching markets in general and marriage markets in particular. First, the model

takes into consideration that rationally imperfect ability of men and women to evaluate

potential marital partners when searching for a match. Second, the model does not

pose any restrictions on the number of characterisitcs that a potential match can have

and allows to estimate the impact of the joint as well as individual desirable attributes

on the final seletion of the mate. Third, it accounts for the strategic motives that

arizes from the fact that all agents know of both their own and their potential partners’

imperfect ability to evaluate each other. The combination of these three features gives

rise to a host of novel sorting patterns such as reaching up the desirability ladder and

targeting potential partners which are out of one’s league. Moreover, it unveils the

relative strenghts of different characteristics driving the observed sorting patterns.

We analyze the sorting patterns that arize in a highly multi-dimensional setup where

males and females simultaneously differ in several important attributes, such as income,

education, skill, age and race. The first goal of the paper is to document these multi-

dimensional sorting patterns and describe the potentially different strategies pursued

by males and females that lead to these sorting patterns.

The second goal of the paper is to delve into the relative importance of each at-

tribute and the joint consideration of all attributes as main drivers of sorting patterns.

Rosenfeld (2008) documents the prevalence of endogamy (i.e., horizontal preferences)

with respect to race and religion in the U.S. over the 20th century. He finds less ev-

idence of endogamy in income and education over time. To our knowledge, no paper

has studied the joint incidence of several attributes on the sorting patterns and docu-

ment how much time and effort is allocated to the search of individual as well as joint

characteristics of a potential match.

The third goal of the paper is to evaluate changes in the sorting patterns and the

marital choices of men and women over a decade from 2008 to 2019. This period of time

is notable for the fact that the ways in which men and women gather information about

potential partners has changed dramatically. As documented in Rosenfeld, Thomas and

3



Hausen (2019), over this period the number of couples meeting online has more than

doubled and as of 2017 was the most prevalent means of communication, accounting

for almost half of all new couples. Given this dramatic change in search technologies,

it is important to see whether and how sorting has changed as a result.

The fourth goal goal of the paper is to evaluate the mechanism proposed by Martellini

and Menzio (2020) which emphasizes the possibility that an endogenous increase in se-

lectivity can compensate for the decline in search costs. Through the lens of our model,

we can measure selectivity in both absolute and relative terms. The overall effort ex-

acted in jointly selecting the characteristics of a potential partner determines whether

the resulting number and quality of matches has improved. However, preferences among

characteristics may lead to selectivity in some attributes more than others with am-

bigous effect on on matching outcomes.

We find that both males and females have strong vertical preferences with respect

to income, education and skill. As a result, both males and females seek potential

partners with higher current income, as well as higher education and higher skill which

both could serve as a proxy for future income. Preferences on race seem to be horizontal,

so both males and females seem to prefer partners of the same race, consistent with the

findings in Rosenfeld (2008).

We find that women reach out much further up the desirability ladder than men.

Women strongly prefer men with the highest income and skill, put significantly more

effort into identifying such potential partners and target their search strategies much

more than do men. This is especially striking given that we explicitly assume that men

and women get equal benefits from marriage and face identical shadow costs of search.

We find that taking into account multidimensionality in search matters. Both males

and females spend about 40% of their search effort on the joint characteristics of a part-

ner. That is, all attributes (skills, education, income, race) must be simultaneuously

taken into account in targeting a potential partner. By looking at individual char-

acteristics, we find that while preferences appear horizontal along some dimensions,

taking multidimensionality into account results in a very low level of assortativeness in

matches. These results show the importance of taking into account complexity in the

decision of finding a match.

We find that education together with race are the most sought after characteristics

in a partner. The search effort that both men and women put on these attributes is the
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highest among attributes. Recent literature1 found evidence of more interratial mar-

riages in online dating that partially overtunrs the long-lasting horizontal preferences

in race. Our results show that much cognitve resources are spent by both men and

women in finding a partner of the same race.

With respect to education, the evidence on assortative matching in education has

been mixed.2We find that both men and women value education highly, devoting the

most effort among the attributes to this particular category. This focus on education

has important implications for inequality in the U.S. and abroad.3

We find no change in the sorting patterns or shadow costs of search despite rapid

improvements in search technologies. We find no evidence of change in selectivity by

men or women despite a likely increase in the benefits that good matches bring with

them over time. These results apply to both joint characteristics (overall selectivity)

as well as effort in searching for individual attributes over time.We think this can

be explained by the fact that though each person has access to many more potential

matches, their ability to properly evaluate this newly available throve of information,

and their incentives to do so governed by preferences, have not improved.

In addition, we find that the strategic interations of targeted search significantly

reduce inequality across married couples compared with the benchmark of assortative

matching typically assumed in the literature. Moreover, we find that strategic in-

teractions of targeted search bring inequality a long way towards the outcome where

marriages are assigned randomly. This is because targeted search produces behavior

such as reaching up the desirability ladder, which generates a large number of matches

between high income and low income individuals. In some cases there are more such

matches than would be produced if matching was random. We find that, when com-

pared with random matching, inequality is attributed to sorting by skill and education,

with smaller contributions from current income and race.

The paper is related to the literature of multidimensional matching in a marriage

market, recently surveyed in Chiappori (2020). The first investigation of frictionless

matching with unobservable characteristics is due to Choo and Siow (2006). How-

ever, by assuming separability of the surplus and restrictions on the distributions of

1See, e.g., Thomas (2020). Smith et al. (2014) and Lin and Lundquist (2013))
2See, e.g., Mare (2016), Eika et al. (2019), Gihelb and Lang (2020)).
3See, e.g., Skopek et al. (2011), Greenwod et al. (2014), Lee (2016), Eika et al. (2019), Ciscato

and Weber (2020), Chiappori et al (2017), Fagereng et al. (2022).
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preferences, their model is exactly identified and cannot be tested. To lessen this short-

coming, Dupuy and Galichon (2014) build on Choo and Siow’s framework with the

additional assumptions of quadratic surplus and normal distribution. They use a sur-

vey of Dutch households containing information about education, height, BMI, health,

attitude toward risk, and personality traits of the spouses. The estimates of the affinity

matrix that defines the quadratic surplus lead to two important empirical conclusions.

First, sorting occurs on several dimensions, with individuals trading-off attributes of

their spouses according to their characteristics. Second different attributes matter dif-

ferently for men and women. While we confirm their results on the importance of

multidimensionality and differences in preferences between men and women, we do not

impose restrictions on the shape and distribution of the surplus. This feature of our

model allows us to fully estimate preferences and surplus and measure the contribution

of each individual characteristics on the targeting decisions and outcomes.

Using Dupuy and Galichon (2014)’s framework, Ciscato and Weber (2019) use Cur-

rent Population Survey data to study the evolution of gains from marriage in the United

States from 1964 to 2017. They find that importance of education has increased while

that of age has decreased since the 1960s as confirmed in Chiappori et al. (2017). They

also report that racial segregation on marriage markets has decreased from the 1960s

to the 1970s but recently is slightly increasing. Chiappori et al. (2020) show that

assortative matching has increased in education in the U.S. over the last decades. Our

analysis confirms the finding on education mostly for women and strong horiziontal

preferences on race. However, in our sample, preferences and search effort across at-

tributes have not significantly changed. Taking into account vertical preferences across

all the characteristics, even if individual characteristics reflect relatively high degree of

assortativeness, considering them jointly result in low assortativeness in the matching

patterns.

This paper also relates to the literature investigating the decline in search frictions

on economic outcomes over time. Ellison and Ellison (2018) show that the reduction

in trading frictions brought about by the Internet has led to better matching between

products and consumers and, in doing so, to an increase in consumer surplus. Focussing

also on matching in product markets, Menzio (2021) find that the growth rate of the

surplus depends on the rate at which search frictions decline and on the elasticity of

buyers’ utility with respect to the degree of specialization in attributes. For the labor
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markets, Martellini and Menzio (2021) report that the decline in search costs has not

been matched by improvements in unemployment, labor productivity growth, vacancies

and transition rates. They attribute this finding to an increase in selectivity cancel-

ing out the abeting of search frictions. Flashing out the trade-off between selectivity

and declining search costs in marriage markets is the recent paper of Antler, Bird and

Freshtman (2022). They show that learning and search frictions have ambiguous effects

on sorting patterns as more informative dating due to technological improvements leads

to an endogenous increase in effort to find the best match. Different from these contri-

butions, our paper provides a direct measure of selectivity overall and across attributes

and allows us to quantify their contribution over time.

The paper proceeds as follows. Section 2 summarizes the theory used in the empirical

part. Section 3 describes data and the empirical results. Section 4 discusses the effects

of sorting on income inequality and welfare. Section 5 concludes.

2 Model of targeted search

In this section we briefly discuss the model we use for the analysis which we borrow

from Cheremukhin, Restrepo-Echavarria and Tutino (2020). The economy contains a

large finite number of females and males. Females and males are characterized by a

multidimensional set of attributes, such as income, age, education, and race. We define

a set of types of females and males, which contains all the combinations of attributes

available. We assume F types of females indexed by x, and µx identical females of each

type x. There are also M types of males indexed by y, and µy identical males of each

type y. Types x and y are in general unranked indices that aggregate all attributes.

Males and females are heterogeneous in their type and simultaneously search for a

match. Both males and females know the distribution and their preferences over types

on the other side of the market, but there is noise—agents cannot locate potential

partners with certainty. However, they can pay a search cost to help locate them more

accurately. We model this by assuming that each agent chooses a discrete probability

distribution over types. Each element of this distribution reflects the likelihood of

contacting a particular agent on the other side. Let px (y) be the probability that a

female of type x targets a male of type y, and qy (x) be the probability that a male

of type y targets a female of type x. Figure 1 illustrates the strategies of males and
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Figure 2.1: Strategies of Males and Females

females. Once these are selected, both males and females make one draw from their

respective distributions to determine which individual they will contact.

A match between any female of type x and any male of type y generates a non-

negative payoff (surplus) Φxy. If a male and a female match, the payoff is split between

them, so that the payoff appropriated by the female εxy and the payoff appropriated by

the male ηxy sum up to the total surplus Φxy = εxy + ηxy.

A more targeted search, or a probability distribution that is more concentrated

on a particular group of agents (or agent) is associated with a higher cost, as the

agent needs to exert more effort to locate a particular person more accurately. We

assume that agents enter the search process with a uniform prior of whom to target,

p̃x (y) = 1/
M∑
y=1

µy and q̃y (x) = 1/
F∑
x=1

µx. Choosing a more targeted strategy implies

a larger distance between the chosen strategy and the uniform prior and is associated

with a higher search effort. A natural way to introduce this feature into our model is

the Kullback-Leibler divergence (relative entropy), which provides a convenient way of

quantifying the distance between any two distributions, including discrete distributions

as in our model. We assume that the search effort of female of type x is defined as

follows:

κx =
M∑
y=1

µypx (y) ln
px (y)

p̃x (y)
. (2.1)
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Likewise, a male’s search effort defined as

κy =
F∑
x=1

µxqy (x) ln
qy (x)

q̃y (x)
. (2.2)

We assume that the search costs cx (κx) = θxκx and cy (κy) = θyκy are linear

functions of search effort.

To capture congestion in meetings among identical agents we introduce a congestion

function φxy = φ (px (y) , qy (x)), which depends in some general way on the strategies

of the agents as well as the number of agents of each type. Given this, the total number

of matches formed between females of type x and males of type y is given by

Mx,y = µxµypx (y) qy (x)φxy.

Both males and females maximize the expected value of their payoffs net of the

search costs assuming that they take the meeting rates as given. For a female of type

x, the problem is

Yx = max
px(y)

M∑
y=1

µyεxyqy (x)φxypx (y)− θx
M∑
y=1

µypx (y) ln
px (y)

p̃x (y)
(2.3)

Likewise, a male of type y solves

Yy = max
qy,j(x,i)∈Sy,j

F∑
x=1

µxηxypx (y)φxyqy (x)− θy
F∑
x=1

µxqy (x) ln
qy (x)

q̃y (x)
(2.4)

A matching equilibrium is then a Nash equilibrium in the admissible strategies for

females and males, px (y) and qy (x), which solve the problems in (2.3) and (2.4) for

each individual male and female. We utilize the results describing the properties of the

matching equilibrium which we briefly summarize below.

First, a matching equilibrium must satisfy the necessary conditions, which facilitate

computation of equilibria:

p∗x (y) = exp

(
εxyq

∗
y (x)φ∗xy
θx

)
/

M∑
y′=1

µy′exp

(
εxy′q

∗
y′ (x)φ∗xy′

θx

)
, (2.5)
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q∗y (x) = exp

(
ηxyp

∗
x (y)φ∗xy
θy

)
/

F∑
x′=1

µx′exp

(
ηx′yp

∗
x′ (y)φ∗x′y
θy

)
. (2.6)

Second, if the congestion function takes the form φxy = p−αx q
−(1−α)
y , 0 < α < 1, and

search costs θx and θy are positive, then the matching equilibrium exists, is unique, and

the aggregate matching function exhibits constant returns to scale. In addition, if the

the surplus is split proportionally as εxy
Φxy

= 1− α, and the parameter α is the same for

all pairs of types (x, y), then the competitive equilibrium is constrained efficient.

In the empirical section we observe the numbers of searchers, µx and µy, the match-

ing rates, Mx,y, between each pair of types x and y. We use the model to recover

the underlying preferences Φxy. For identification purposes, we further assume that 1)

α = 0.5, which implies symmetric congestion and equal split of the surplus, and 2) all

agents have the same costs θx = θy = θ, and 3) the smallest element of the matrix Φxy

is normalized to 1. Using a computational algorithm and the properties of the model

we can uniquely identify the ratios of preferences to costs Φxy/θ which in combination

produce the empirically observed matching rates as an equilibrium of the model.

Our computational algorithm starts with an initial guess for the unknown surplus

matrix Φxy, computes equilibrium strategies px (y) , qy (x) and matching rates which

correspond to the proposed surplus, and then computes the likelihood that the empiri-

cally observed matching rates are an outcome of the proposed surplus. Several standard

likelihood maximization algorithms commonly used in the literature are combined to

converge to a local maximum from the initial guess. The procedure is then repeated

from 1000 random initial guesses to obtain the global maximum. All the estimated

surpluses reproduce the empirical matching rates very closely.

3 Empirical Results

3.1 Data

To study the U.S. marriage market, we use data from the Integrated Public Use Mi-

crodata Series (IPUMS) available for 12 years from 2008 to 2019. We take unmarried

males and females and (newly) married couples and assign both males and females to

bins corresponding to types in the model.
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We consider multiple discretizations in several important dimensions. We split the

income distribution into tertiles, quintiles or deciles (two bottom deciles are merged

representing zero income). We break by education into 3 unequal bins (school, college

and post-college) or 2 bins (school, college). The 20-40 age range is broken into 3 or 9

equal bins. The data allow us to distinguish by race into 4 bins (white, asian, hispanic,

black) or 2 bins (combining white with asian, and hispanic with black due to similarity

of preferences). We also have data on occupations which allows us to sort occupations

by average wages to obtain a mapping from occupation to skill level, which we break

into 3 or 6 equal bins. The skill bins roughly correspond to white-collar workers (top

bins), blue-collar workers (bottom bins) and services (middle bins). We consider uni-

and multi-dimensional combinations of attributes and compute the numbers of single

adults and marriage rates using the representative sample of the U.S. population for all

couples married in the past year and unmarried males and females ages 21-40 for each

of the 12 annual samples from 2008 to 2019.

3.2 Methodology

In order to describe the results of the estimation for each breakdown of the data into a

combination of attributes, we develop some new measures, as well as employ some con-

cepts and computational techniques proposed in the literature. First, as in Cheremukhin

et. al. (2020), we employ measures of assortativeness of the equilibrium matching and

of horizontality of preferences.

Let us denote by Pxy = [px (y)] the matrix of all female strategies and by Qyx =

[qy (x)] the matrix of male strategies. Then let ξx =
∣∣∣{arg maxy (Pxy)}x∈{1,...,F}

∣∣∣ ∈
{1, ...,M} be the number of different types of males that females target, and let

ξy =
∣∣∣{arg maxx (Qyx)}y∈{1,...,M}

∣∣∣ ∈ {1, ..., F} be the number of different types of fe-

males that males target. The Assortativeness Index is then defined as A (Pxy, Qyx) =

(ξx + ξy − 2) / (M + F − 2) representing the number of different targets of search rela-

tive to the maximum possible number of targets. For an assortative equilibrium where

each type has a different target type, the assortativeness index equals 1, while for a

mixing equilibrium, where all males have a single target type and all females have a

single target type, the assortativeness index equals 0.

We distinguish horizontal and vertical preferences in a similar way. Let ωx =
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∣∣∣{arg maxy (εxy)}x∈{1,...,F}
∣∣∣ ∈ {1, ...,M} be the number of different types of males who

are best matches for at least one type of female. Let ωy =
∣∣∣{arg maxx (ηxy)}y∈{1,...,M}

∣∣∣ ∈
{1, ..., F} be the number of different types of females who are best matches for at

least one type of male. Then the Horizontality Index is defined as H (εxy, ηxy) =

(ωx + ωy − 2) / (M + F − 2) representing the number of different best matches relative

to the total number of types. We define preferences to be vertical if every type’s best

match is the same type, and we define preferences to be horizontal if every type’s best

match is a different type. Therefore, when preferences are vertical, the horizontality

index equals 0, and when preferences are horizontal, the horizontality index equals 1.

For multi-dimensional types, we naturally extend these definitions to compute as-

sortativeness and horizontality indexes with respect to each dimension separately. For

instance, when the estimation is for an intersection of income, skill and education bins,

we can compute each argmax in the formulas above on the subset of bins corresponding

to only e.g. the income dimension to obtain estimates of assortativeness and horizon-

tality of preferences with respect to income alone.

Another concept we introduce into the search and matching literature is a measure

of selectivity by agents with respect to attributes. The amount of search effort that

each agent exerts in equilibrium, defined in equations (2.1-2.2), represents how targeted

towards certain types agents’ strategies are, therefore measuring overall selectivity of

agents. Using recent research on decomposition of multivariate information (see e.g.

Williams and Beer, 2010) we can decompose total selectivity into selectivity with re-

spect to each attribute, and to combinations of attributes. In each case, selectivity

represents how picky an agent is with respect to an attribute, or combination of at-

tributes. Selectivity is measured in bits of effectively processed information, reflecting

the skewness of probabilitic strategies chosen by agents in equilibrium.

Finally, following Dupuy and Galichon (2014), for each estimated surplus matrix

we compute an affinity matrix with respect to attributes. The affinity matrix is a

quadratic form approximation of preferences with respect to attributes and captures

the curvature of preferences, with diagonal elements capturing strength of mutual at-

tractiveness based on one attribute, and off-diagonal elements capturing intensity of

complementarity/substitutability between attributes of men and women.
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3.3 Uni-dimensional estimates

We start by estimating preferences and equilibrium strategies for each attribute of

interest separately. In each case we break down an attribute into the largest reasonable

number of dinstinguishable bins, as shown in summary Table 2. We find that mutual

attractiveness is strongest based on race and education, and a lot weaker based on

age, skill and income. We find that preferences are strongly horizontal for race, mixed

for education and age, and close to vertical for income and skill. Consistent with the

idea that only horizontal preferences lead to assortativeness, while vertical preferences

lead to looking up the desirability ladder and a mixed equilibrium, we find high levels

of assortativeness by race and education, intermediate level of assortativeness by age,

and low assortativeness by skill and income. Naturally, affinity and horizontality of

preferences are reflected in selectivity of individual strategies which show that people

are most selective based on race, and least selective based on income and skill.

It is instructive to compare our results with the existing literature shown in Table

1, also summarized in the last column of Table 2. However, at this point it is important

to note a crucial difference of this paper from the existing literature. Most studies of

the marriage market can be roughly divided into two groups. The first group explores

overall matching rates and derives various measures of assortatitveness (see an extended

discussion of these in Chiappori, Dias and Meghir 2020, 2022), but cannot distinguish

horizontal from vertical preferences because both lead to identical predictions of positive

assortatitve matching based on existing models. The second group (e.g. Hirsch et al

2010, Lee 2016, Bruch and Newman 2018) explores data from online or in person

dating which shows who is interested in whom, and thus sheds light on preferences, but

typically does not contain data on who ended up matching whom. This paper uses a

model to break the dichotomy - we are able to use aggregate matching rates to estimate

both preferences and strategies - to simultaneously distinguish horizontal from vertical

preferences, and infer who targets whom in equilibrium, thus, providing an internally

consistent measures of horizontality and assortativeness.

The literature has largely found mixed or horizontal preferences for race, education

and age, and vertical preferences for skill and income. 4

Our findings are mostly consistent with the literature on preferences. However, the

4See Rosenfeld (2008), Hitsch et. al. (2010, 2010a), Skopek et. al. (2010), Lin and Lundquist
(2013), Lee (2016), Lewis (2016), Bruch and Newman (2018), Thomas (2020).
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Attribute Bins Assorta- Horizon- Affinity Selec- Literature
tiveness tality tivity

Income 9 0.16 0.26 0.07 0.05 PAM, vertical
Skill 6 0.24 0.31 0.13 0.06 mixed, vertical
Age 9 0.49 0.53 0.24 0.18 PAM, horizontal

Education 3 0.75 0.63 0.85 0.22 PAM/mixed, mixed
Race 4 0.97 0.99 0.82 0.74 PAM/mixed, mixed

Table 2: Uni-dimensional sorting

literature is largely split arguing about the degree of assortativeness in race, education

and skill, and finds some assortativeness in income and age.5 Keeping in mind the

differences in measures and definitions, in contrast, we document a high degree of

assortativeness in race, education and age, and non-assortativeness in income and skill.

These results also provide a uni-dimensional benchmark against which to evaluate multi-

dimensional estimates.

3.4 Multi-dimensional estimates

Ideally we would like to estimate an intersection of the maximum number of bins for all

attributes simultaneously. However, estimating a 5832 by 5832 matrix of preferences

is not only infeasible, but it would make little sense since the matrix distributing a

few million people into 34 million boxes would be extremely sparse. Therefore, we

have to cut on the number of bins along most dimensions. Besides, although our

estimation algorithm is very efficient, it has its limitations. In particular, even the

BigTex supercomputer that we employ for estimation runs into memory limitations for

surplus matrices exceeding 54 by 54. To go around this problem, we intersect various

combinations of attributes with various breakdowns into bins and estimate surplus for

each such combination.6 We average the results both across years and across different

5See Kalmijin (1994), Jepsen and Jepsen (2002), Choo and Siow (2006), Schwartz and Graf (2009),
Greenwood et. al. (2014), Smith et al (2014), Bertrand et al. (2015), Mare (2016), Qian (2017),
Chiappori et al. (2017), Florio and Verzillo (2018), Mansour and McKinnish (2018), Ciscato and
Weber (2019), Eika et. al. (2019), Ciscato et al (2020), Gihleb et. al. (2020), Chiappori et al (2022),
Guiso et. al. (2022).

6For instance, we consider combinations: 3income x 3education x 3skill x 2race, 3income x 3age x
3skill x 2race, 5income x 3 skill x 2race, 5income x 3age x 2race and many others.
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Attribute Bins Assorta- Horizon- Selectivity
tiveness tality Men Women

Total 0.33 0.35 1.18 1.39
Income 3,5 0.64 0.33 0.10 0.22

Skill 3 0.68 0.39 0.07 0.12
Age 3 0.86 0.51 0.14 0.11

Education 2,3 0.62 0.97 0.24 0.27
Race 2,4 0.98 0.97 0.18 0.25

Interactions 0.45 0.43
Income Skill 0.18 0.14

Income Education 0.06 0.04

Skill Education 0.07 0.05

Income Age 0.07 0.07

Table 3: Multi-dimensional sorting

estimation setups, and combine them all into representative summary Tables 3 and 4.7

We find that multidimensional results are in general agreement with uni-dimensional

results on horizontality and assortativeness along all five attributes under consideration.

Preferences are horizontal in race and education, mixed in age, vertical in skill and

income, which produces stronger assortativeness for the more horizontal attributes.

However, the selectivity measures are quite different compared with the uni-dimensional

case. The multi-dimensional estimation uncovers some striking differences between men

and women in their selectivity along income, skill and race. An even more striking result

is the large fraction of the selectivity effort that is spent on the interaction between

attributes, such as income, skill and education. This interaction, e.g. for men looking

at skill and income, is larger than the total effort spent on the two attributes separately,

and overall interactions account for roughly one third of the total selectivity effort. On

the other hand, selectivity over race is much lower when interactions among attributes

are considered, than when race preferences are estimated separately. These results

demonstrate that strategies targeting combinations of attributes, such as high income,

high skill and high education, play a profound role in sorting, that cannot be accounted

for with uni-dimensional studies of sorting.

7The estimation results are very similar and broadly consistent across different estimation setups
as can be verified in the appendix.
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Income Skill Age Education Race
Income 0.23 0.09 0.16 -0.03 0.06

Skill 0 0.15 0 0 0
Age 0.17 0 0.48 0 0.21

Education 0.04 0.06 0 0.32 0
Race 0 0 0.06 0 0.74

Table 4: Affinity matrix

The aggregated affinity matrix in Table 4 shows curvature of preferences. The

strength of preferences represented by the diagonal elements is generally consistent

with uni-dimension results presented in Table 2: preferences are strongest for race,

with less importance placed on age, education, income and skill, in that order. Educa-

tion is apparently more important when considered separately than when evaluated in

combination with other characteristics, which suggests that education often serves as a

proxy for other attributes or combinations of attributes, such as income and skill (future

income). The off-diagonal elements reflecting complementarities between attributes of

men and women are also instructive. We can interpret elements of the table as follows:

1) returns to skill and age increase with income, 2) returns to education increase with

income and skill for women and fall with income for men, 3) race and age exhibit a

positive complementarity (old is paired with white).

3.5 Changes over time

An important question often discussed in the literature is that of changes in assor-

tativeness and preferences over time. Our estimates are uniquely taylored to answer

this question. An important disadvantage, however, is the relatively short period of

12 years, where we are constrained by the availability of information on couples that

married in the preceding year. To extend the time dimension we could have used all

married couples, as some studies do. However, we decided not to do this because then

the definition of the numbers of searchers becomes unclear, and the marriages included

in each sample start to overlap between samples.

Like in the preceding section, we average indexes of assortativeness and horizontality

across samples, but now for each year separately. The averaged series are shown in Fig-

ure 3.1. The remarkable result is that there is no identifiable trend in any of the series.
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Figure 3.1: Properties of perferences and sorting over time

The degree of horizontality of preferences is stable overall and for each category. The

degree of assortativeness is stable overall and for each category. Selectivity of females

is slightly higher than selectivity of males, both remain at similar levels throughout the

period we consider. This is especially strinking taking into account the fact that the

methods of finding a mate changed dramatically between 2008 and 2019. In particular,

in 2008 less than one in ten marriages were concieved online, while in 2019 more than

half the marriages originated online. One would expect a profound effect of such a

change in the method on the search patterns, but we find essentially no change in how

people search and who marries whom.

In the context of our model, the effect of online dating must show up as an overall

effective decrease in the cost of search θ. Given that the sorting patterns and the shape

of preferences overall does not seem to have changed much over this period, we might

check whether the average values of the elements of the matrix Φxy/θ has increased

over time. We have tried various approaches to computing this value and employed

different statistical approaches. The resulting measures of the average cost over time
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Figure 3.2: Inverse costs and selectivity over time

are illustrated in Figure 3.2. We find no evidence of a significant decline in the value

of costs. We find no evidence of a significant increase in selectivity, i.e. the precision

with which agents are able to identify their best matches. We think this finding is

compelling. By showing that improvements in the technology of matching are not

paired with significant cost reduction, the results suggest that the nature of the cost of

search θ is cognitive rather than technical.

Another explanation is that online dating platforms are a double-edge sword. On

the one hand, the addition of low-cost tools to sort through candidates in an online

platform gives agents access to a much wider range of potential matches and makes it

easier to sort through them, discarding the ones they do not like. On the other hand,

having access to many more potential candidates than previously available increase the

complexity faced by the agent seeking the most suitable match.

To see this, consider the case when, prior to online dating, the agent had access

to two candidates A and B. The ranking of these candidates, which consitutes the

subjective state in which she operates, comprises of two states: A first and B second

or viceversa. Now suppose that online dating gives access to four potential candidates.

The ranking of these candidates expands the states from two potential outcomes to

4!=24. For a given cost of search θ, this expanded state requires excercising more

cognitive effort to establish which of the candidates is the most suitable match. Thus,

it may be that the introduction of online dating has proportionally increased the ratio
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of the expeced utility and cost of potential matches, leaving Φxy/θ unchanged.

Martellini and Menzio (2021) suggested that significant improvements in search

technology have not resulted in better and more numerous matches due to an increase

in selectivity of the agents. Much like complexity, the increase in number of options

available to the agents leads to an impasse rather than an increase in the numerosity of

matches: in looking for quality candidates, agents are reluctant to settle for the better

candidates and look for the best available prospect. The resulting paradox of choice

manifests in fewer matches, albeit potentially better pairing. We check for evidence of

this paradox in our data by measuring selectivity proxied by search effort over time and

across genders and attributes.

Bottom right panel of Figure 3.1 shows the evolution of selectivity in our data from

2008 to 2019 for men and women. As we discussed earlier, our measure of selectivity

is based on search effort and its decomposition into components related to attributes

and their pairwise interactions. There seems to be no empirical support for increased

selectivity in our sample both across races and genders. In fact, selectivity appears to

be generally stable throughout the sample. The overall stability portraied by Figure 3.1

suggests that selectivity is an unlikely explanation for the lack of additional matches

that the improved matching technology should have brought about.

Different from Martellini and Menzio (2021)’s selectivity argument, our explanation

of increased complexity as defined above is perfectly compatible with a constant search

effort throughout our sample. We have defined complexity as the expanded options

given by technological improvements. In the example above, given the information-

theoretical constraint in our model, going from a ranking of two options (2 rankings)

to one of four (24 rankings) increases the initial uncertainty of the space that the agent

faces as measured by its entropy from 1 to 3.2 bits of information required to perfectly

detect the most suitable match. Thus, the same amount of information processed in

a more complex environment leads to a lower reduction in uncertainty about potential

matches than that afforded in a world with fewer options.

In our model, uncertainty is captured by the probability on which expected costs

and gains from the search are based. So long as the differential in expected gains and

costs are equalized, as it appears to be the case in Figure 3.1, our model would not

predict a substantial change in matches formed in the marriage market.
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Figure 3.3: Changes in strategies between 2008-2011 and 2016-2019 over income, edu-
cation, skill and race.

3.6 Change in Preferences

We document whether preferences for suitable candidates have changed from the first

third of 2008-2011 to the last third of 2016-2019 in Figure 3.3. In the Figure, we

estimate preferences and strategies joinly over income, education, skill and race. Income

is divided into three levels: low (L), medium (M), high (H). Education also has three

levels: school (S), college (C) or post-college (P). We use skills as proxy for future

income and identify three skill levels from lowest (1) to medium (2) to highest (3).

Race is split into white/asian (W) and black/hispanic (B). The arrows in the Figure

indicate the targets agents consider the most searched for and thickness of the arrows

portrays the intensity of search.

Figure 3.3 shows that both the targets and the search’s intensity have generally

remained stable from the beginning to the end of the sample. Women and men have

unchanged vertical preferences for income and skills: they both prefer to target potential

candidates with higher income and skills than their own. Moreover, women constantly

appear to put significantly more effort into identifying richer and more skilled potential
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Figure 3.4: Changes in sorting, preferences and selectivity jointly over income, educa-
tion, skill and race.

partners and target their search strategies more than men do. Horizontality in race pref-

erences is also visible throughout the sample. The combinations of attributes that are

most attractive (high income, high skill, high education) illustrate how the interaction

of attributes works: people search for candidates which match certain levels for each

attribute simultaneously. No significant changes in horizontality of overal preferences

or preferences for attributes can be found, as shown in Figure 3.4

4 Effects of sorting on inequality and welfare

4.1 Effects on income inequality

In this section we investigate the effect of marital sorting on income inequality. We

compare the income inequality across married couples in the data with alternative sort-

ing schemes, such as positive assortative matching (matches formed between partners

with similar characteristics), negative assortative matching (matches formed between

partners with opposite characteristics), uniform random matching. It is natural to

expect PAM to increases inequality compared with random matching, while NAM to
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decrease inequality compared with random matching. This is because the more matches

are formed between top and bottom quintiles of income or skill or education, the lower

inequality.

The model with multiple attributes and their interactions allows us to consider

various counterfactuals, where people are blind to, i.e. cannot distinguish, particular

characteristics. For instance, we can predict the matching rates that would have oc-

curred if people had no information on income and could only base their search on

education, skill or race. This is a unique feature of our framework that allows us to

first estimate the interactions of attributes in search, and then evaluate their effects on

inequality and welfare.

Figure 4.1 illustrates our results. The ability of people to target their search in-

creases inequality by 2.9 gini points compared with blind random matching. About

36 percent of that increase is due to the ability to target based on skill, 32% due to

ability to target based on education, 22% based on income itself, and only 10% are

explained by targeting based on race. We reach a similar breakdown if we consider the

coefficient of variation. These counterfactuals are remarkably stable over time, another

indication of little change in preferences or selectivity over time, which in turn makes

the contributions to inequality stable over time.

Another interesting finding is that in the data inequality is significantly lower than

what would be produced by PAM and only marginally larger than what would be

achieved by random matching. The reason for this is the mixing equilibrium of targeted

search. When preferences are vertical, a lot of males and females target partners a

lot wealthier (today or in the future) than themselves. This increases the number of

matches between high and low income individuals, in some cases more than would be

produced even by matching people randomly.

4.2 Effects on welfare

Using the same counterfactuals used for study of inequality, we can evaluate the distri-

butional impacts on expected welfare, expected matching rates, and expected income

across the unmarried individuals. In Figure 4.2 we show distributions of changes in

these variables aggregated across all years. Extreme assortativeness increases welfare

slightly, with about two thirds of the population gaining, but reduces expected incomes
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Figure 4.1: The effects of marital sorting on inequality.

and matching rates with a similar amount of people incurring a loss. Random matching

reduces welfare by 7 percentage points, with 95 percent of the population experiencing

a loss, but increases incomes and matching rates for about two thirds of the population.

The results of a policy that makes people race-blind (resembling diversity policies at

universities and workplaces) shows a 4 percentage point deterioration in welfare and

an increase in expected incomes and matching rates for more than half the popula-

tion. It is notable that highly-desirable white types (e.g. high income, post-college,

high-skill white women) lose the most in welfare, income and matching rate from a

highly assortative allocation, but gain the most from diversity policies as well as from

random matching. At the same time, the main losers from the diversity policies are

high-income, high-skill non-white individuals. Because preferences for race are strong

and horizontal, diversity policies, by producing more inter-racial marriages, reduce wel-

fare of the otherwise highly-desirable non-white individuals and increase welfare of the

otherwise highly-desirable white individuals.
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Figure 4.2: The effects of marital sorting on welfare, incomes and matching rates.

5 Conclusions

We have successfully applied the model of targeted search to analize preferences and

sorting of men and women in the U.S. marriage market. For the first time using only

aggregate data, we document strong horizontal preferences for race and age, mixed

preferences for education, and vertical preferences for income and skill. Our analysis of

multidimensional sorting reveals targeting of combinations of vertical characteristics,

such as income, skill and education. Effort that is put into identifying such combinations

exceeds the effort applied to horizontal characteristics.

We study the evolution of preferences and search strategies over the period from

2008-2019, when large changes in the search technology and methods of search have

been documented. We find no change in strength or structure of preferences, or change

in overall selectivity of individuals. This suggests cognitive constraints as the main

determinant of selectivity by individuals, and is in stark contrast with theories predict-

ing increased selectivity as a result of technological improvements in labor and product

market search, suggested in the literature.

We find that income inequality is mainly accounted for by sorting on vertical char-

acteristics, such as income and skill. Nevertheless, verticality of preferences over these
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characteristics implies reduced assortativeness and much lower inequality than would

have prevailed if preferences over the same characteristics were horizontal. We find that

diversity policies would reduce welfare for two-thirds of the population, with the main

losers from the policy being the otherwise highly-desirable non-white individuals, and

the main beneficiaries - the otherwise highly-desirable white individuals.
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