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Abstract

We develop a tractable model of monopsony power based on information fric-

tions in job search. Workers and firms choose probabilistic search strategies, with

information costs limiting how precisely they can target matches. Firms post

wages strategically, anticipating application behavior and exploiting a first-mover

advantage. The model nests both directed and random search as limiting cases

and yields a closed-form wage equation that shows the effects on wage-setting

power of search frictions, labor market tightness, and sorting. Wage markdowns

in equilibrium arise not only from limited labor supply elasticity but also from

sorting patterns and demand-side frictions. In highly assortative environments,

the absence of wage competition allows firms to capture nearly the full surplus,

even when labor supply is elastic. Numerical results replicate markdowns of 30-

40% and suggest that constrained-efficient wages would be approximately 20%

higher. Our framework unifies the analysis of monopsony, sorting, and wage

posting, and provides a computationally efficient method for evaluating directed

search equilibria.
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1 Introduction

A central insight of models of monopsony is that firms set wages below marginal prod-

uct, either because workers face search frictions or because jobs are differentiated (Card,

2022). Yet canonical models typically treat these sources in isolation. In this paper, we

develop an information-based theory of monopsony power that unifies the search and

job differentiation perspectives in a single framework. Our model endogenizes both the

targeting precision of job search and the elasticity of firm access to labor, generating

new insights into the determinants of wage-setting power.

We build on Cheremukhin, Restrepo-Echavarria, and Tutino (2020), who introduced

a model of simultaneous targeted search under information constraints, more applicable

in the context of marriage markets. Here, we adapt and extend that framework to the

labor market, introducing sequential wage posting and strategic firm behavior. Workers

and firms choose probabilistic search strategies, deciding how precisely to target a part-

ner type. These decisions are subject to endogenous information frictions, modeled as

relative entropy (Kullback-Leibler divergence) between a uniform prior and the chosen

strategy. In this rational inattention specification, frictions arise endogenously from

agents’ limited ability to identify their preferred match and provide a microfoundation

for the multinomial logit (MNL) discrete choice structure frequently assumed in the

literature on job differetiation.

Our framework nests both directed and random search as limiting cases. When

information costs vanish, workers can fully target their desired firms types, replicating

the classic directed search environment. When costs are infinite, search is random and

matches occur with uniform probability. For intermediate levels of costs, agents choose

imperfectly targeted strategies, and wages posted by firms reflect their expectations

about the number and composition of applicants, as well as the costliness of screen-

ing. The model preserves the key features of directed search: sequential wage posting,

strategic attraction of worker types, and matching via submarket-specific technologies,

but introduces information frictions which span the continuum between directed and

random search.

We derive a closed-form expression for the equilibrium wage that isolates the funda-

mental drivers of monopsony power. In our model, monopsony arises from five distinct

sources: (i) worker-side search costs affect the precision with which wage compensation
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attracts workers and determine the elasticity of labor supply; (ii) firm-side screening

costs shape firms’ willingness to screen applicants and determine the elasticity of la-

bor demand; (iii) labor market tightness amplifies both elasticities through numerical

imbalances; (iv) equilibrium sorting, where positive assortative matching reduces wage

competition across firms and increases firm surplus shares; and (v) the sequential nature

of search, which gives firms a first-mover advantage by letting them strategically commit

to wage menus. Contrary to canonical models, we show that the relationship between

wage markdowns and the labor supply elasticity is not one-to-one: demand-side factors

and sorting patterns significantly affect equilibrium wages.

We calibrate the model to match empirically plausible parameters and show that

moderate information frictions, characterized by search cost parameters in the range

0.1-0.5, generate wage markdowns of 30-40%, consistent with recent empirical estimates.

However, these outcomes are socially suboptimal. A constrained social planner, inter-

nalizing congestion externalities, would recommend a combination of reduced search

effort and higher wages, yielding markdowns of only 10-15%. This implies that opti-

mal policy could raise wages by approximately 20% without reducing the number of

matches or welfare.

Our framework also provides new insights into the properties of directed search equi-

libria. In the zero-cost limit, multiple equilibria arise: positively assortative (PAM),

negatively assortative (NAM), and mixed-strategy types. Only some of these equilib-

ria implement the planner’s solution; others generate inefficient allocations or extreme

wage dispersion. We show how the strength of productive complementarities deter-

mines whether assortative or mixed matching is efficient and how assortativeness leads

to excessive monopsony power. The literature often focuses on PAM equilibria, par-

ticularly when productive complementarities are strong, since they tend to maximize

output. However, we show that assortative matching systematically increases monop-

sony power by suppressing wage competition and allowing firms to capture most of the

surplus. In contrast, mixing equilibria generate more competitive wage-setting and a

fairer surplus split but may be inefficient, even when they yield higher welfare than

other equilibria. Our numerical analysis highlights how the strength of productive

complementarities (i.e. the shape of the surplus) governs both the efficiency and dis-

tributional properties of equilibria, and shows that even the welfare-dominant directed

search equilibria may be unstable, failing to survive under small information frictions.
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Our method introduces a novel approach for characterizing directed search equi-

libria by convexifying the discrete strategic problem using an entropic regularization.

This connects our paper to recent developments in convex approximations of com-

binatorial problems (e.g., Cuturi, 2013; Oberfield et al., 2024). We show that our

information-based approach not only yields a continuous approximation to discrete di-

rected search equilibria but also allows efficient computation and robust comparative

statics, offering a diagnostic tool for identifying equilibrium multiplicity, inefficiency,

and non-survivability under frictions.

Thus, our contributions are threefold. First, we propose a unified model of monop-

sony that spans directed and random search through endogenous information frictions.

Second, we derive a closed-form wage equation identifying five distinct channels of

monopsony power, including both supply- and demand-side frictions. Third, we use

the model to clarify the efficiency and wage-determination properties of directed search

equilibria, providing both theoretical results and numerical characterizations. These

contributions shed light on the positive and normative implications of monopsony power

in modern labor markets, and respond to recent calls for more structurally grounded

models of monopsony that integrate strategic interactions, sorting, and information fric-

tions (Card, 2022; Azar and Marinescu, 2024b). By endogenizing targeting behavior

and wage setting, our framework offers a unified and tractable alternative to reduced-

form elasticity-based approaches. In particular, it shows that wage-setting power arises

not only from limited labor supply elasticity, but also from equilibrium sorting and mar-

ket tightness, which together can generate large markdowns even when labor supply is

highly elastic.

The paper proceeds as follows. Section 2 presents the model of sequential targeted

search with endogenous information costs and characterizes the competitive equilibria

and the planner’s solution. Section 3 connects our framework to the search literature

by exploring the properties of the model in the directed search and random search

limits. Section 4 analyzes the sources and consequences of monopsony power, derives

the wage markdown equation, and provides quantitative results for wages, markdowns,

and efficiency. Section 5 concludes.
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Related literature

This paper relates to several strands of the economic literature. First, it contributes

to the directed search literature, which studies markets where firms post wages and

workers choose where to apply (e.g., Moen, 1997; Burdett, Shi, and Wright, 2001;

Shi, 2001). Standard directed search models assume perfect information and costless

targeting, leading to submarket-based equilibria that are often efficient and feature as-

sortative matching (see Eeckhout and Kircher, 2010; Guerrieri, Julien, Kircher, and

Wright, 2021). Our framework generalizes this class of models by introducing infor-

mation costs that determine how precisely workers and firms can target one another.

This friction generates a continuum between directed and random search and allows

us to recover standard directed search as a limiting case. A broader perspective on

these modeling choices and their implications for sorting, matching technologies, and

equilibrium efficiency is provided in Chade, Eeckhout, and Smith (2017).

A key finding of our paper is that directed search models generically admit multi-

ple equilibria. While positive assortative matching is efficient when productive com-

plementarities are strong, we show that it systematically increases firms’ monopsony

power by eliminating wage competition. In contrast, mixing equilibria feature fairer

surplus splits, but may be socially suboptimal even when productive complementarities

are weak. Our framework provides a unified tool for analyzing efficiency and surplus

distribution across these equilibria, as well as their stability under frictions.

Second, we contribute to the monopsony literature. Recent empirical studies docu-

ment substantial wage markdowns across a wide range of labor markets (e.g., Staiger,

Spetz, and Phibbs, 2010; Azar, Marinescu, and Steinbaum, 2019; Lamadon, Mogstad,

and Setzler, 2022; Dube, Jacobs, and Naidu, 2022), often attributing them to limited la-

bor supply elasticity. Theoretical models typically attribute monopsony power to search

frictions (e.g., Burdett and Mortensen, 1998), job differentiation (Manning, 2003), or

oligopsony (Robinson, 1933; Boal and Ransom, 1997) and quantify the aggregate wel-

fare losses due to labor market power as large (Berger, Herkenhoff, and Mongey, 2022).

We provide a tractable framework that unifies these mechanisms and yields a closed-

form wage equation decomposing the sources of monopsony power into five channels:

information frictions on both sides, labor market tightness, equilibrium sorting, and

wage-setting timing. Unlike models that focus solely on labor supply elasticities, we

show that markdowns emerge endogenously from strategic interactions between firms
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and workers, and are shaped by the structure of sorting and information in equilibrium.

Several recent papers attempt to integrate key elements of monopsony: search fric-

tions, heterogeneity, and concentration — into unified models (e.g., Lamadon, Mogstad,

and Setzler, 2022; Berger, Herkenhoff, Kostol, and Mongey, 2023). These frameworks

combine existing modeling blocks, such as random search with bargaining or discrete

choice with rent-sharing, to estimate wage markdowns and labor market misallocation.

However, they treat the relationship between sorting, elasticities, and wage setting as

largely mechanical: labor supply elasticity governs wages, while sorting is determined

separately by preferences or technology. In contrast, our model captures the full strate-

gic interaction between search precision, wage posting, and equilibrium sorting. Firms

anticipate how targeted or diffuse applications will be, and this shapes both wages and

sorting patterns. As a result, monopsony power depends jointly on concentrations, la-

bor elasticities, and sorting. In assortative environments with strong complementarities,

wages collapse toward the outside option, and firms retain nearly the entire surplus,

even when labor supply is highly elastic. Sorting becomes a central determinant of

wage markdowns, not just match efficiency.

Several papers have attempted to nest directed and random search to generate in-

termediate degrees of randomness in matching (e.g., Menzio, 2007; Lester, 2011; Lentz,

Maibom and Moen, 2022) and study the efficiency consequences (Rabinovich, Wolthoff,

2022). Unlike these models, which impose hybrid structures, our framework endogenizes

the degree of search precision via information costs. This yields a continuous spectrum

between uniform random matching and directed search, within a unified model. Re-

latedly, Wu (2024) studies a version of our targeted search model in a labor market

setting, but does not characterize the structure of monopsony power or properties of

directed search equilibria.

Methodologically, our approach connects to recent work that convexifies discrete

assignment or search problems using regularization techniques. Our use of information

costs mirrors entropic regularization in optimal transport (Cuturi, 2013) and convex

approximations in spatial assignment models (Oberfield, Rossi-Hansberg, Sarte, and

Trachter 2024). This allows us to efficiently compute equilibria in environments where

standard directed search models exhibit indeterminacy or are difficult to solve.

Finally, we build on our earlier work in Cheremukhin, Restrepo-Echavarria, and

Tutino (2020), which studied targeted search in a simultaneous-move setting with bar-
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gaining. The current paper shifts to sequential search with wage posting, focuses on

the labor market rather than the marriage market, and introduces closed-form analyt-

ical characterizations of wages and sorting. In doing so, we reconcile the tractability

of multinomial logit-type models with the equilibrium structure of directed search and

monopsony.

2 Model

In this section, we present a model where firms are looking to fill a vacancy, and workers

— who are either employed or unemployed — are looking to find a job. Each agent

chooses a probabilistic search strategy that can be interpreted as a search intensity

over types, where each element of the distribution reflects the likelihood of contacting a

particular agent on the other side. A more targeted search, or a probability distribution

that is more concentrated on a particular group of agents (or agent), is associated with

a higher cost, as the agent needs to exert more effort to locate a particular potential

match more accurately.

The economy contains a large, finite number of individual agents: workers whose

types are indexed by x ∈ {1, ...,W} and firms whose types are indexed by y ∈ {1, ..., F} .
We denote by µx the number of workers of type x and by µy the number of firms of type

y. We think of workers and firms characterized by a multidimensional set of attributes.

Types x and y are unranked indices that aggregate all attributes.

A match between any worker of type x and any firm of type y generates a payoff

(surplus) fxy. We do not place any restrictions on the shape of the payoff function, and

we normalize the outside option of both the worker and the firm to zero. We denote

the payoff (wage) appropriated by the worker ωxy and the payoff appropriated by the

firm ηxy such that ηxy = fxy − ωxy.

Agents form a match if they meet, and each agent (weakly) benefits from forming

a match; i.e., each agent’s payoff is non-negative. Since a negative payoff corresponds

to absence of a match, we make the following assumption on the payoffs:

Assumption 1. The payoffs are non-negative:

fxy ≥ ωxy ≥ 0.
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When seeking to form a match, both workers and firms know the number of agents of

each type and the characteristics of their preferred types on the other side of the market.

They face a noisy search process where they are uncertain about how to locate their

preferred match. In this environment, each agent’s action is a probability distribution

over agents on the other side of the market. Since the number of potential matches is

finite, the strategy of each agent is a discrete probability distribution. Let p̄x (y) be the

probability that a worker of type x targets or sends an application to a firm of type y.

Similarly, we denote by q̄y (x) the probability that a firm of type y targets or considers

the application of a worker of type x.

Reducing the noise to locate a potential match more accurately is costly: It involves

a careful analysis of the profiles of potential matches, with considerable effort in sorting

through the multifaceted attributes of each firm and candidate. When seeking to form a

match, agents rationally weigh costs and benefits of targeting the type of characteristics

that result in a suitable match. A worker rationally chooses their strategy p̄x (y) by

balancing the costs and benefits of targeting a given firm. A strategy p̄x (y) that is

more concentrated on a particular firm of type y affords them a higher probability to

be matched with their preferred firm. However, it requires more effort to sort through

profiles of all the firms in the market to locate their desired match and exclude the

others. So locating a particular firm or worker more accurately requires exerting more

search effort, and it is costlier.

We assume that agents enter the search process with a uniform prior of whom to

target, p̃x (y) and q̃y (x). Choosing a more targeted strategy implies a larger distance

between the chosen strategy and the uniform prior and is associated with a higher

search effort. A natural way to introduce this feature into our model is the Kullback-

Leibler divergence (relative entropy),1 which provides a convenient way of quantifying

the distance between any two distributions, including discrete distributions as in our

1In the model of information frictions used in the rational inattention literature, κx represents the
relative entropy between a uniform prior and the posterior strategy. This definition is a special case
of Shannon’s channel capacity, where information structure is the only choice variable (See Thomas
and Cover (1991), Chapter 2). See also Cheremukhin, Popova, and Tutino (2015) and Matejka and
McKay (2015) for applications to stochastic discrete choice with information costs.
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model. We assume that the search effort of worker i of type x is defined as follows:

κx =
F∑

y=1

µyp̄x (y) ln
p̄x (y)

p̃x (y)
. (2.1)

We assume that the search costs cx (κx) are a function of the search effort κx. Note

that κx is increasing in the distance between a uniform distribution over firms and the

chosen strategy, p̄x (y). If an agent does not want to exert any search effort, she can

choose a uniform distribution over types and meet firms randomly. As she chooses a

more targeted strategy, the distance between the uniform distribution and her strategy

p̄x(y) grows, increasing search effort κx and the overall cost of search. By increasing

the search effort, agents bring down uncertainty about locating a prospective match,

which allows them to target their better matches more accurately.

Likewise, a firm’s cost of search cy (κy) is a function of the search effort defined as:

κy =
F∑

x=1

µxq̄y (x) ln
q̄y (x)

q̃y (x)
. (2.2)

Furthermore, we assume the following:

Assumption 2. The search costs of agents cx (κ) and cy (κ) are strictly increasing,

twice continuously differentiable and (weakly) convex functions of search effort.

As a special case, we consider a linear cost of search. Then, the total costs of search

for a worker of type x are given by cx = θxκx and for a firm of type y by cy = θyκy,

where θx ≥ 0 and θy ≥ 0 are the marginal costs of search.

For convenience, we introduce a new notation for the strategies of workers and firms.

We define the workers’ and firms’ search intensities as the ratios of their posterior and

prior: px (y) =
p̄x(y)
p̃x(y)

and qy (x) =
q̄y(x)

q̃y(x)
, respectively.

The meeting rate depends on the strategies of each agent, px (y) and qy (x), and a

congestion function ϕ (px (y) , qy (x) , µx, µy), which depends in some general way on the

strategies of all other agents as well as the number of agents of each type. Given this,

the total number of matches formed between workers of type x and firms of type y is

given by

Mx,y = µxµypx (y) qy (x)ϕ (px (y) , qy (x) , µx, µy) .

Assumption 3. The congestion function is twice continuously differentiable in
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each p and q.

We introduce this congestion function following Shimer and Smith (2001) and

Mortensen (1982), who assume a linear search technology. Note that if ϕ (...) = 1,

then a match takes place if and only if there is mutual coincidence of interests; i.e.,

both agents draw each other out of their respective distribution of interests. By intro-

ducing a congestion function we are allowing for matches to depend in some general

way on both an agent’s search intensity2 for a specific agent (p and q) and on the num-

ber of agents taking part. We think of this assumption as representing the matching

technology in a separate submarket for each combination of x and y.

Note that when setting up the congestion function we implicitly assume that there

are no direct inter-type congestion externalities. However, our model still features

strong indirect equilibrium interactions between the strategies of agents that work akin

to inter-type congestion by attracting or deterring agents.

2.1 Sequential targeted search

To initiate the search and matching process, firms start by posting vacancies. Each

posted vacancy includes a wage menu, and the firm commits to paying a type-dependent

wage in the case of matching. After the vacancies are posted, and because workers

cannot perfectly distinguish which firm is of which type despite learning the wage menus

of each firm, they choose a distribution that determines the likelihood of contacting

a particular firm and choose one firm from this distribution to send an application.

Finally, once firms have received worker’s applications, each firm chooses the worker to

which it will extend a job offer from the set of workers that applied to that particular

firm.

When workers decide where to send their applications, they take as given the posted

wages of firms, such that the set of strategies of workers px (y) ∈ Sx is given by:

Sx =

{
px (y) ∈ RF

+ :
F∑

y=1

µy

δx
px (y) ≤ 1

}
,

2Note that here, search intensity refers to how concentrated the distribution of interests of an agent
is. A higher search intensity results in assigning higher probability to one or several agents within an
agent’s distribution of interests.
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where px (y) = p̄x(y)
p̃x(y)

, and p̃x (y) = 1/
F∑

y=1

µy = 1/δx is the worker’s uniform prior over

the whole set of firms

(
δx =

F∑
y=1

µy

)
.

The firms will strategically choose a wage menu ωx,y and screening strategy qy (x).

The other difference between the problem of workers and firms is that firms do not sort

through all the workers that are looking for a job; they only sort through those that

send an application to their firm, and when doing so, firms do not know the types of

the workers that applied, but they know the length and expected composition of the

queue. In expectation, the queue of firm y contains µxpx (y) δx/µy workers of type x.

We define the set of strategies available for firms as:

Sy =

{
qy (x) , ωxy ∈ RW

+ :
W∑
x=1

axyqy (x) ≤ 1, ωxy ≤ fxy

}
.

where qy (x) =
p̄y(x)

p̃y(x)
, and q̃y (x) = 1/

W∑
x=1

(µxpx (y) δx/µy) is the firm’s uniform prior over

their own queue. Here we define new variables for queue weights axy =
µxpx(y)

ΣW
x=1µxpx(y)

, and

queue length δy = ΣW
x=1µxpx (y).

The set of actions s ∈ S is given by the cartesian product of the sets of strategies

of workers sx ∈ Sx and firms sy ∈ Sy.

Figure 2.1 illustrates the interactions and search strategies of workers and firms.

The solid arrows show the intensity px (y) that a worker of type x assigns to targeting

a firm of type y. Similarly, dashed arrows show the intensity qy (x) that a firm of type

y assigns to targeting a worker of type x. Once these are selected, both workers and

firms make one draw from their respective distributions to determine where to send an

application and which applications to inspect (denoted by bold arrows).

Although applications and/or job offers are not lost in the mail, there is still

a coordination problem: µxpx (y) workers applied to type y firms, and firms sent

µyqy (x)µxpx (y) job offers, but they did not necessarily send all of those to differ-

ent workers. Several firms might contact the same worker, and some workers may not

get any offers. We assume that µxpxµyqyϕxy matches are created, where the coordina-

tion problem between type x workers and type y firms is captured by the congestion

11



Figure 2.1: Strategies of Workers and Firms under Sequential Targeted Search
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function/meeting technology ϕxy (px, qy, µx, µy) described earlier.

Both firms and workers choose their optimal strategies, and if a firm and a worker

match, the payoff fxy is split between them according to the commitment whereby firms

posted type-dependent wage menus in the first stage of the game.

The game is sequential as in Stackelberg in that when firms post wages and choose

their search effort, they internalize the best response strategies of workers. Firms behave

like leaders and workers behave like followers. However, consistent with the assump-

tions of the simultaneous model (see Cheremukhin, Restrepo-Echavarria, and Tutino

(2020)), neither the workers nor the firms internalize the effects of their strategies on

the congestion function and take matching rates in each submarket as given. This is

because there are a large number of individuals of each type, so a change in an individ-

ual firm’s or worker’s strategy will not have a noticeable aggregate effect on the number

of matches. This assumption of large number of identical agents of each type which all

play identical strategies is reminiscent of ”competitive” search.

Assumption 4. Agents take the meeting rates they face as given, disregarding the

dependence of the congestion function on agents’ own search intensities.

Definition. A matching equilibrium is a set of admissible strategies for workers sx ∈
Sx, firms sy ∈ Sy, and meeting rates, such that the strategies solve the problems for

each individual firm and worker given the meeting rates, which are consistent with the

strategies of the agents.

2.2 The problem of the worker

We start by describing the problem of the worker. Workers take as given qy (x)ϕxy—the

probability of forming a match with type y firms. The worker receives a wage ωxy in

the case of matching and bears a linear cost of search θxκx (px (y)). The goal of type x

workers is to maximize surplus subject to a constraint on strategies (with renormalized

Lagrange multiplier λx):

Yx = ΣF
y=1µyqy (x)ϕxyωxypx (y)− θxΣ

F
y=1

µy

δx
px (y) ln px (y) + θxλx

(
1− ΣF

y=1

µy

δx
px (y)

)
Since the objective function of workers is twice continuously differentiable and con-

cave in their own strategies, first-order conditions are necessary and sufficient conditions
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for equilibrium. Using the necessary first-order condition,

θx
δx

(ln px (y) + λx + 1) = qy (x)ϕxyfxy, (2.3)

we can derive a closed-form solution for the optimal strategy of workers:

p∗x (y) =
exp

(
qy(x)ϕxyωxy

θx/δx

)
ΣF

y′=1

µy′

δx
exp

(
qy′ (x)ϕxy′ωxy′

θx/δx

) . (2.4)

2.3 The problem of the firm

The goal of type y firms is to choose wages and search intensities over their queue of

workers to maximize their expected match payoffs fxy − ωxy, net of linear search costs

θyκy (qy (x)) and subject to a constraint on strategies (with renormalized Lagrange

multiplier λy):

Yy = ΣW
x=1µxpx (y)ϕxyqy (x) (fxy − ωxy)− θyΣ

W
x=1

µxpx (y)

ΣW
x=1µxpx (y)

qy (x) ln qy (x)

+θyλy

(
1− ΣW

x=1

µxpx (y)

ΣW
x=1µxpx (y)

qy (x)

)
.

The firm internalizes the best responses of the workers (Equation 2.4). To internalize

the responses, we need to take derivatives of px (y) with respect to the wage ωxy set

by the firm and with respect to the firm’s search strategy qy (x). If we introduce

new notation zxy = ϕxyqy(x)

θx/δx

(
1− µy

δx
px (y)

)
, then the partial derivatives of (2.4) are

conveniently given by: ∂px(y)
∂qy(x)

qy(x)

px(y)
= ωxyzxy and ∂px(y)

∂ωxy

1
px(y)

= zxy. In addition, note

that the derivatives of queue weights axy = µxpx(y)

ΣW
x=1µxpx(y)

can be computed as ∂axy
∂X

=

axy (1− axy)
∂px(y)
∂X

1
px(y)

.

The problem can be rewritten as:

Yy = ΣW
x=1µxpx (y)ϕxyqy (x) (fxy − ωxy)− θyΣ

W
x=1axyqy (x) (ln qy (x) + λy) + θyλy,

and we can write the first-order condition of the firm with respect to search intensities
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as follows:

∂Yy

∂qy
= µxpx (y)

θy
δy

[
ϕxy

θy/δy
(fxy − ωxy) (1 + zxyωxy)− 1

− (ln qy (x) + λy) (1 + (1− axy) zxyωxy)

]
= 0. (2.5)

Strategies of firms then satisfy:

ln qy (x) + λy =

(
ϕxy

θy/δy
(fxy − ωxy) (1 + zxyωxy)− 1

)
/ (1 + (1− axy) zxyωxy) .

Firms’ strategies must therefore satisfy the following necessary condition for equilib-

rium:

q∗y (x) =

exp

(
ϕxy

θy/δy
(fxy−ωxy)(1+zxyωxy)−1

1+(1−axy)zxyωxy

)
ΣW

x′=1ax′y exp

(
ϕx′y
θy/δy

(fx′y−ωx′y)(1+zx′yωx′y)−1

1+(1−ax′y)zx′yωx′y

) . (2.6)

Firms also optimally choose wage menus in the first stage. We can write the first-

order condition with respect to wages as follows:

∂Yx

∂ωxy

= µxpx (y) qy (x)
θy
δy

[
ϕxy

θy/δy
((fxy − ωxy) zxy − 1)

− (ln qy (x) + λy) (1− axy) zxy

]
= 0, (2.7)

and the second-order derivatives as:

∂2Yx

∂q2xy
= − 1

qy (x)
,

∂2Yx

∂ω2
xy

= − ϕxy

θy/δy
zxy.

Since the objective function of firms is twice continuously differentiable and strictly

concave with respect to their own strategies, the first-order conditions are necessary and

sufficient conditions for equilibrium. Furthermore, we can combine the two optimality

conditions (2.5) and (2.7) to eliminate qy (x) and λy to obtain a simple expression for

an interior solution 0 ≤ ωxy ≤ fxy for the wage:

ω∗
xy =

[
axyfxy + (1− ax)

θy/δy
ϕxy

− 1

zxy

]fxy
0

. (2.8)
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Wages stay at the limits because beyond the limits there is no match and the

decision-maker is strictly worse off (as reflected in the constraints on the strategy space).

In this case we can also substitute the (interior) optimal wage to obtain optimal search

intensities of firms:

q∗y (x) =
exp

(
ϕxy

θy/δy
fxy

)
ΣW

x′=1ax′y exp
(

ϕx′y
θy/δy

fx′y

) .
The properties of the equilibrium, fully characterized by necessary conditions (2.4),

(2.6) and (2.8) critically depend on the assumptions regarding the congestion function,

in other words, the matching technology.

The matching technology we introduce is a standard symmetric constant returns to

scale matching technology that combines the number of participants in each submar-

ket. The number of agents entering each submarket (x, y) are cx,y = µxpx (y)
µy

δx
and

dx,y = µyqy (x) ax,y. We assume that the matching technology is described by a sym-

metric CES function M(c, d) =
(

1
2
c

σ−1
σ + 1

2
d

σ−1
σ

) σ
σ−1

, with σ > 0, σ ̸= 1, with special

cases for Cobb-Douglas when σ = 1 and Leontieff when σ = 0. In this case, the con-

gestion function is defined as ϕx,y = M (cx,y, dx,y) /µxµypx (y) qy (x). This assumption

for various parameter choices encompasses most of the interesting cases studied in the

literature. It is also directly comparable to our simultaneous targeted search model as

it gives the same first best allocation when search costs approach zero.

Proposition 1. Under assumptions 1- 4, there exists θ such that for high enough costs

relative to the number of agents
(

θx
δx
, θy
δy

)
> θ a matching equilibrium exists and is

unique.

Proof. The equilibrium of the matching model can be interpreted as a pure-strategy

Nash equilibrium of a strategic form game among first-stage decisions of firms. Since

the strategy space is a simplex and, hence, a non-empty, convex, compact set, sufficient

conditions for the existence of the equilibrium require us to check whether the payoff

functions are super-modular on the whole strategy space as in Tarski (1955). Super-

modularity can be proven by showing negativity of diagonal elements and non-negativity

of the off-diagonal elements of the Hessian matrix.

Let Jy =
[

∂Yy

∂qyx

∂Yy

∂ωxy

]
be the Jacobian matrix collecting the set of first-order

conditions for all firms y ∈ {1, ...,M} , and let H be the corresponding Hessian matrix.
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To derive the Hessian matrix, note that under A.1, strategies of each firm are non-

cooperative, i.e., independent of the strategies of other types as well as the strategies of

the other agents of their own type. Note also that we have assumed no direct inter-type

congestion externalities. These assumptions produce a Hessian matrix with a block-

diagonal structure, which greatly simplifies the analysis. The Hessian consists of 2x2

blocks along the diagonal of the form:

Hxy =

[
∂2Yy

∂qyx∂qyx

∂2Yy

∂ωxy∂qyx
∂2Yy

∂qyx∂ωxy

∂2Yy

∂ωxy∂ωxy

]
.

All the remaining off-diagonal elements are zero. The derivatives of interest are

quite cumbersome to compute. However, we can express the elements of the Hessian

as follows (where F and G are some positive functions):

∂2Yy

∂qyx∂qyx
= − 1

qxy
+

δxδy
θxθy

F (fxy, ωxy, qxy, axy) ≤ 0,

∂2Yy

∂qyx∂ωxy

=
δxδy
θxθy

G (fxy, ωxy, qxy, axy) ≥ 0,

∂2Yy

∂ωxy∂ωxy

= −δxδy
θxθy

ϕxyϕxyqyx ≤ 0.

From this structure, it is clear that if costs of search are large enough (separately

or in combination) relative to the number of agents, then all of these inequalities hold,

while if costs are very small (or number of agents large) the first inequality is violated.

For uniqueness, we need diagonal dominance of the form:∣∣∣∣ ∂2Yy

∂ωxy∂ωxy

∣∣∣∣ ∣∣∣∣ ∂2Yy

∂qyx∂qyx

∣∣∣∣ > ( ∂2Yy

∂qyx∂ωxy

)2

.

If costs are large enough (or number of agents small enough), then the diagonal

terms dominate the off-diagonal terms. On the contrary, when costs are small (or

numbers of agents large), then diagonal dominance may well be violated. We observe

important cases of multiplicity numerically and discuss these in Section 3.

In Section 4, we find that the threshold θ is quite low, implying that for most

parameterizations relevant for practical analysis the equilibrium is unique. Multiplicity
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of equilibria for low search costs is an important and robust finding which relates to

the directed search literature, as we discuss in Section 3. The computation of all the

equilibria of the model is possible using the necessary first-order conditions of the model

for an exhaustively wide range of costs.

2.4 Social planner’s solution

We solve the social planner’s problem for the sequential model assuming an utilitarian

welfare function. Consequently, the wage decision disappears from the social planner’s

problem altogether. We can write social welfare as the sum of objective functions of

all the agents in the model, as the planner takes into account all the same benefits and

costs of the matching process as the agents, subject to the same constraints on search

intensities as individual agents. The social welfare function is then:

Ω = ΣW
x=1µxYx + ΣF

y=1µyYy = ΣW
x=1µxθxλx + ΣF

y=1µyθyλy

+ΣW
x=1Σ

F
y=1µxµypx (y)

(
qy (x)ϕxyfxy − θx

δx
(ln px (y) + λx)− θy

δy
qy (x) (ln qy (x) + λy)

)
.

The wages cancel out from the problem, and hence the planner’s solution only

describes allocations of search effort, but does not place restrictions on wage determi-

nation. The first-order conditions for the planner’s problem can be written as follows:

∂Ω

∂px (y)
= µxµy

(
qy (x) fxyϕxy (1 + εϕ,p)− θx

δx
(ln px (y) + λx + 1)

− θy
δy
(1− axy) qy (x) (ln qy (x) + λy)

)
= 0, (2.9)

∂Ω

∂qy (x)
= µxµypx (y)

(
fxyϕxy (1 + εϕ,q)−

θy
δy

− θy
δy

(ln qy (x) + λy)

)
= 0, (2.10)

where we denote εϕ,q = ∂ϕxy

∂qy(x)

qy(x)

ϕxy
and εϕ,p = ∂ϕxy

∂px(y)
px(y)
ϕxy

. We can deduce from

equations (2.9) and (2.10) that the search intensities prescribed by the planner satisfy:

θy
δy

(ln qy (x) + λy) = ϕxyfxy (1 + εϕ,q)−
θy
δy
,
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θx
δx

(ln px (y) + λx + 1) = qy (x)

(
fxyϕxy [(1 + εϕ,p)− (1− axy) (1 + εϕ,q)] + (1− axy)

θy
δy

)
.

From our definition of the function ϕxy and its relationship to the matching func-

tion one can show that the elasticities satisfy: 1 + εϕ,q = εm,d and 1 + εϕ,p = εm,c +

(1− axy) εm,d. We can compare planner’s optimality conditions with those of the com-

petitive equilibrium described in (2.3) and (2.5), which we repeat here:

θy
δy

(ln qy (x) + λy) =

(
ϕxy (fxy − ωxy) (1 + zxyωxy)−

θy
δy

)
/ (1 + (1− axy) zxyωxy) ,

θx
δx

(ln px (y) + λx + 1) = qy (x)ϕxyωxy.

We can derive expressions for wages in competitive equilibrium which would give

efficient allocations by finding wages which would make the conditions for the workers

equivalent, and wages which would make the conditions for the firms equivalent. To

implement the strategies proposed by the social planner, workers should be promised a

wage:

ωPO,W
xy = fxyεm,c + (1− axy)

θx/δx
ϕxy

.

Under the symmetric Cobb-Douglas calibration of the congestion function, εm,c =

εm,d =
1
2
. The planner promises the worker half the surplus plus a positive term which

vanishes as workers’ search costs approach 0. In the limit, workers should receive exactly

half the surplus. Comparing with the wage prevailing in competitive equilibrium given

by (2.8), we observe that workers are promised a fraction axy of the surplus instead of

half, and that firms charge an additional monopsony discount 1/zxy reflecting their first

mover advantage. Comparing the conditions for the firms, to implement the socially

optimal strategies, firms should be promised a wage that satisfies:

(
ϕxy (fxy − ωxy) (1 + zxyωxy)−

θy
δy

)
=

(
ϕxyfxyεm,d −

θy
δy

)
(1 + (1− axy) zxyωxy) ,

which boils down to a quadratic equation with respect to wages with one positive

solution
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ωPO,F
xy =

A

2
+

√
A2

4
+

1

zxy
fxy (1− εm,d),

where we denote A = (1− (1− axy) εm,d) fxy+(1− axy)
θy/δy
ϕxy

− 1
zxy

. The wage prescribed

to the firm by the planner and the equilibrium wage coincide when εm,d equals 1.

Otherwise, the wage prescribed by the planner is higher. In the symmetric case, one

can show that as long as axyfxy >
1

zxy
and 1

2
fxy > (1− axy)

θx/δx
ϕxy

, competitive wages are

lower than optimal wages: ωCE
xy < ωPO,W

xy < ωPO,F
xy .

For most parameters of interest, for low values of search costs, the firms should give

away noticeably more than half of the surplus, leaving less than half for themselves,

while workers should be getting exactly half. This demonstrates the fact that in the

presence of strong negative congestion externalities, workers and firms jointly over-

supply search effort in equilibrium. For the most part, workers need to be incentivized

and firms need to be dis-incentivized from putting inefficiently high search effort by

the planner promising lower payoffs in the case of matching. Implementation of this

solution looks very much like a tax scheme that benefits workers and hurts firms yet

obtains a better matching outcome at a lower search cost and generates on net extra

revenue for society.

3 Connections to the search literature

This section examines how our model connects to and extends the search literature.

We take a deliberately staged approach: we first study the model in the zero-cost limit

and the infinite-cost limit, which correspond to classical directed and random search

environments, respectively. We then explore how equilibrium outcomes evolve in the

interior, where information frictions are small but non-negligible, and demonstrate how

sorting and wage compression interact to influence monopsony power. This section

highlights how canonical results from the literature emerge as special cases of our model,

and the next section explores how our framework interpolates between them to uncover

new results.

We begin by connecting our model to the directed search literature. In Appendix

A, we show the full derivation of competitive equilibria and the planner’s solution for a

stylized 2-worker 2-firm heterogeneous agents directed search model. This model repli-
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cates as special cases under specific parameteric assumptions many standard directed

search models, such as e.g. Burdett, Shi and Wright (2001), Moen (1997), Shi (2001),

Eeckhout and Kircher (2010), and many others described in the survey by Guerrieri et

al (2021). We demonstrate that the commonly held perception — that directed search

models naturally lead to a unique assortative equilibrium with an efficient surplus divi-

sion which decentralizes the socially efficient allocation — is only partially correct. As

we shall see, there is truth to each of these perceptions separately, but they tend not

to hold all at the same time.

In the limit as search costs approach zero, our sequential wage-posting targeted

search model replicates all of the core features and agents’ problems of directed search:

strategic wage posting by firms, optimal worker application strategies, optimal firm

screening strategies, and equilibrium assignment through submarkets. As comparison

with the model in the Appendix reveals, the only additional assumption of our targeted

search model is the positive costs of search linked to the precision of mixed strategies.

Clearly, when search costs approach infinity, all the strategies will be optimally uni-

formly flat, delivering uniform random matching in equilibrium. Thus, for intermediate

values of costs, our model fills in the middle ground between directed search (as costs

approach zero) and random search with wage posting (as costs approach infinity).

To evaluate the full equilibrium structure of the model, we calibrate it in a two-

worker, two-firm setting with a unit mass of workers and firms of each type, µx = µy =

1. We assume a Cobb-Douglas matching function M(c, d) =
√
c · d, which satisfies

constant returns and allows for analytical tractability. We consider four canonical

surplus matrices:

1. Homogeneous: fxy = [ 1 1
1 1 ], representing identical workers and identical firms.

2. One-sided heterogeneity: fxy = [ 2 1
2 1 ], where firms differ, but workers are identical.

3. Horizontal surplus: fxy = [ 2 1
1 2 ], with strong productive complementarity.

4. Vertical surplus: fxy = [ 2 1
1 0.4 ], where one worker is better than the other, and

one firm is better than the other.

For each of the four specifications, we assume symmetric costs of search θx = θy = θ

and vary the cost parameter θ in a wide range from 0.0001 to 100. For each value of

the cost parameter, we compute all the competitive equilibria and the socially optimal

allocation using the necessary and sufficient conditions derived in the previous section.

We compute each solution by making an initial guess for the strategies of the workers
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and firms, computing the equilibrium posted wage, and then checking if the optimality

conditions for the remaining strategies are satisfied. We vary the vector of strategies

until we find a fixed point.

Each column of Figure 3.1 shows how the average posted wages as a fraction of the

surplus and total welfare vary with search costs for various equilibria, and for the social

planner’s solution, for each of the four surplus specifications. The first specification

replicates the findings of Burdett, Shi and Wright (2001).3 There are two pure-strategy

equilibria supported by wages arbitrarily close to zero, and one mixed-strategy equilib-

rium which splits the surplus equally. This case also illustrates how splitting identical

types in the textbook homogeneous-agent directed search model produces multiplicity

of equilibria.

The second specification replicates the findings in Moen (1997). The mixing equi-

librium in this case reproduces the near equalization of expected values qy (x)ϕxy · ωxy

(queue length times the wage) for each worker across locations, a feature commonly

used in the directed/competitive search literature and in the subsequent block-recursive

specifications (see Menzio and Shi, 2010). In this case, the mixing equilibrium also im-

plements the socially optimal allocation with wages that fairly split the surplus - the

celebrated properties of directed search that have come to be treated as automatic. The

key assumption that delivers these results is the ex ante homogeneity of workers: small

deviations towards two-sided heterogeneity can lead to very different predictions, as we

see in the remaining two specifications. Compared with Moen’s (1997) original model,

the simple relabeling of homogeneous workers from one type into two identical types

leads to multiplicity of equilibria.

In contrast, the horizontal and vertical cases produce much richer dynamics. In

the horizontal case, the PAM equilibrium emerges as the best equilibrium in the zero-

cost limit. This equilibrium maximizes welfare but results in extreme monopsony power:

workers apply only to one firm type, and firms face no wage competition. Wages collapse

to the outside option, and firms extract the full surplus. In the vertical surplus case, the

mixed equilibrium gives the highest welfare, with posted wages delivering an efficient

split of the surplus, yet it yields a socially suboptimal allocation even in the zero-cost

limit. These results are consistent with the predictions of the directed search model

3The only difference from Burdett et al (2001) is that their model assumes increasing returns to
scale (M(c, d) = c · d), which lead to social inefficiency of all the equilibria.
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Figure 3.1: Model comparison

we describe in the Appendix. One new insight from our targeted search framework is

that one of the mixing equilibria of the directed search framework which implements

the socially optimal allocation does not survive for (arbitrarily small) positive costs of

search.

The three outcomes of the heterogeneous-agents cases are consistent with the deriva-

tion of Eeckhout and Kircher (2010) whereby prevalence of sorting depends on the in-

terplay of production complementarity and matching complementarity. They predict

that for positive assortative matching to prevail, the strength of supermodularity of

production needs to exceed the strength of matching complementarity. In the cases we

consider, the strength of matching complementarity equals 1. The production comple-

mentarity index fxyf

fxfy
equals 1 for the two homogeneous cases, is between 0 and 1 for

the vertical surplus case, and exceeds 1 for the horizontal surplus case. Indeed, we find

that when production supermodularity dominates, PAM is efficient, otherwise mixing

equilibria are best, but not necessarily efficient.

Similarly to Burdett et al (2001), in all cases, for low values of costs there are exactly

three equilibria: two assortative equilibria (PAM and NAM) and one mixing equilib-

rium. While we get three equilibria for low search costs, as predicted by our propo-
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Figure 3.2: Equilibrium strategies and wages for horizontal case

Figure 3.3: Equilibrium strategies and wages for vertical case

sition in section 2, for costs above a certain threshold a unique equilibrium prevails.

The unique equilibrium often has the structure of the best of the multiple equilibria,

specifically when the PAM equilibrium is best, as well as for one-sided heterogeneity,

but not necessarily when the mixing equilibrium is best.

Figures 3.2 and 3.3 illustrate the equilibrium strategies of workers and firms, the

surplus split and numbers of matches — for three equilibria (PAM, Mixing, NAM) and

for the planner’s solution (PO) — allowing us to compare them for horizontal and ver-

tical structure of the surplus close to the zero-cost limit. In the horizontal case, shown

in Figure 3.2, the positively assortative equilibrium comes qualitatively closest to the
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planner’s solution, but it promises workers extremely low wages, while the planner still

promises workers half the surplus. In the vertical case, shown in Figure 3.3, the mixing

equilibrium is qualitatively the closest to the planner’s solution, although it cannot fully

achieve it as that would require firms to get substantially less than half the surplus,

while workers would still get half. Notably, in both cases, in each assortative equilib-

rium, positive or negative, workers are promised extremely low wages. We observe that

assortativeness reduces competition for workers and substantially increases the firms’

monopsony power. Mixing equilibria imply a fairer split of the surplus, yet may lead

to welfare losses.

In light of these results consistent with the derivations of the corresponding directed

search model, we believe that our sequential targeted search model could serve as an

effective diagnostic tool for studying properties of equilibria in directed search models.

It is much easier to set up the model and find numerically all of its equilibria when

costs approach zero, than considering manually the simplex of combinations of equilib-

rium equalities and inequalities when costs are equal to zero. A related approach has

been proposed for convexifying combinatorial optimal transport problems — using an

entropic regularization term disappearing in the limit — by Cuturi (2013) and in eco-

nomics for convexifying the problem of plant location in space by Oberfield et al (2024).

Our approach not only significantly speeds up the analysis, but also allows to quickly

identify cases of inefficient directed search equilibria — by excluding the directed search

equilibria which are unlikely to survive in practice.

To illustrate the power of the targeted search model, Figure 3.4 shows the paths of

wages and welfare in the unique equilibrium (for high search costs) and in 8 equilibria

(for low search costs) for a model with 3 worker and 3 firm types with surplus shape

fxy =

2 1 1

1 1.5 1

1 1 0.9

. As the surplus is relatively vertical, the unique equilibrium and

then the best equilibrium are positively assortative (PAM), with wages approaching

zero. There is also a negatively assortative (NAM) equilibrium, and a large number

of mixing equilibria, one of which gives the highest surplus share to the workers but

delivers an inferior level of welfare.

To summarize, the wage-posting competitive equilibrium in the sequential targeted

search model fills in the continuum between random matching (when θ → ∞) and
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Figure 3.4: Equilibrium wages and welfare for a 3-worker 3-firm model

directed search (when θ → 0). This model features all the defining assumptions of

directed search models: a) search is sequential: firms post wages, workers apply, firms

choose among those that applied; b) firms post type-specific wages strategically such

that they attract specific kinds of workers; c) after deciding direction of search, workers

and firms meet in submarkets each featuring a matching technology which determines

the number of matches. The novel feature of our model is that we fill in this continuum

by varying the degree to which firms and workers are able to inform themselves about

the available options.

In the zero-cost limit our framework reduces to a standard directed search model.

At the other extreme, in the infinite-cost limit, it converges to a random search model

with wage posting, where like in Burdett and Mortensen (1998) wage dispersion coexists

with random search. Our framework can generate outcomes ranging from complete

monopsony, where the whole surplus goes to the firm, to perfect competition, where

the whole surplus goes to the worker. As we illustrate in the next section, the outcome

depends on labor market tightness — the ratio of firms to workers. As tightness rises,

the effective offer arrival rate (in the sense of Burdett and Mortensen) increases, shifting

the equilibrium from monopsony toward perfect competition. Thus, our model nicely

captures for intermediate level of search costs a hybrid model having features of both

directed search and random search a la Burdett and Mortensen.
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We described several novel findings that shed light on properties of directed search

models. First, for low enough levels of search costs, there are always multiple equilibria.

These are typically overlooked or assumed away in the literature either through focusing

only on specific types of equilibria, or through assuming that identical agents must

play identical strategies, or due to incomplete consideration of the combinations of

equilibrium conditions, some of which may hold as equalities and others as inequalities.

In Appendix A, we consider a standard directed search model with 2 heterogeneous

types of workers and firms. We fully derive the conditions for equilibrium and consider

their properties and combinations. We show that there are always two pure-strategy

equilibria (PAM and NAM) and there can be also mixed-strategy equilibria. We show

that these directed search equilibria are the limiting cases to which the equilibria in

our numerical examples converge as search costs approach zero. However, some of the

directed search equilibria may not survive for any small positive costs.

The second, striking finding (novel, although reminiscent of BSW) is that the com-

monly assumed efficient split of the surplus between the worker and the firm based on

the elasticities of the matching technology only holds for wages of workers which play

mixed strategies and must be indifferent in equilibrium. In pure-strategy equilibria,

characterized by assortativeness, firms post wages arbitrarily close to zero. This result

is in striking contrast with the directed search literature which is used to assuming that

the efficient split of the surplus is a uniform feature of directed search models.

Third, while we find competitive equilibria to be generically constrained-inefficient,

in the zero-cost limit, one of the directed search equilibria may implement the planner’s

allocation. If the planner’s allocation is assortative, then one of the assortative equilibria

implements it with wages set close to zero. If the planner’s allocation is in semi-mixed

strategies, it may not survive for positive costs. In this case, all of the competitive

equilibria may be socially suboptimal in the zero-cost limit.

Fourth, whether the best competitive equilibrium exhibits positive assortative match-

ing depends on whether the strength of production complementarities exceeds matching

complementarities, consistent with Eeckhout and Kircher (2010). In the numerical case

we considered, this condition is f1,1f2,2 > f1,2f2,1. When production complementarities

are strong, competitive equilibria will often exhibit assortativeness, implying that firms

face little competition for workers, and therefore gain monopsony power and use it to

reduce promised wages. When production complementarities are weak, the best com-
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petitive equilibrium tends to exhibit a mixed sorting pattern, and is characterized by

intense competition for workers which leads to a more even split of the surplus.

These findings challenge the view that directed search naturally leads to fair or

efficient outcomes. In the next section, we shift focus to the middle ground where search

frictions are small but finite, and study how wage-setting power evolves continuously

across this space. We quantify how the interaction of frictions and sorting continuously

affects wage markdowns and welfare.

4 Properties of wages and monopsony power

The key questions we seek to answer next are: (i) How do search costs shape equilibrium

wages? (ii) What are the sources of monopsony power in this framework? (iii) How

does labor market tightness interact with firm wage-setting strategies? This section

presents analytical results that shed light on these questions, followed by numerical

simulations that illustrate and validate our findings.

We start the discussion of properties of equilibrium from equation (2.8) which de-

scribes how the equilibrium posted wage is determined. To aid the following discussion,

we substitute the symmetric Cobb-Douglas congestion function into the wage equation:

ω∗
xy =

 axyfxy︸ ︷︷ ︸
Marginal product

− θx√
qy (x)

δx
δy

1(
1− µy

nf
px (y)

)
︸ ︷︷ ︸

Monopsony discount, 1/zxy

+(1− axy)
θy√
1

qy(x)

δy
δx︸ ︷︷ ︸

Competitive premium



fxy

0

Let us unpack each of these terms. The first term promises the workers of type x

a share of the suplus axy = µxpx(y)

ΣW
x=1µxpx(y)

equal to their fraction in the queue of workers

applying to positions at firms of type y. This term reflects two mechanisms. The

workers are given an incentive to search harder so that if they are able to better self-

select into this type of job, they will get a higher wage. This term also reflects the fact

that if other types of workers do not apply to this job, then this type of workers faces

less direct wage competition from other types of workers and can expect a higher wage.

The second term represents the firms’ monopsony discount (we deliberately use a
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different word to distinguish it from the wage markdown). This term is reminiscent

of the literature on monopsony power where the wage markdown is often shown to be

proportional to the inverse of the labor supply elasticity. Recall that the variable zxy was

introduced as the semi-elasticity measuring the effect of an increase in the wage on the

number of workers applying to the firm: zxy =
∂px(y)
∂ωxy

1
px(y)

. The more conventional labor

supply elasticity in this case can be computed as follows: ϵp,ω = ∂px(y)
∂ωxy

ωxy

px(y)
= ωxyzxy.

The monopsony discount is driven by competition with other firms. It works towards

equalizing the expected payoffs faced by the worker from this type of firm compared with

other types of firms. In the formula above, we substituted zxy =
ϕxyqy(x)

θx/δx

(
1− µy

δx
px (y)

)
,

derived from the strategies of the worker, and then substituted the congestion function.

The interpretation of monopsony discount is similar to that in the literature deriving a

multinomial logit form for the firms’ labor supply from a distribution of idiosyncratic

tastes. In our specification, labor supply also has the multinomial logit (MNL) form

(2.4) derived from a micro-founded information search friction. The elasticity of labor

supply in this MNL form is inversely proportional to the marginal search costs faced

by workers, θx. As it gets harder for workers to distinguish between firms, labor supply

becomes less elastic which lowers the equilibrium wage. The elasticity also depends on

the ratio of the total number of firms faced by each worker of type x (δx = Σyµy) and

the total number of workers that apply to each firm of type y (δy = Σxµxpx(y)). As the

firms’ relative numerical disadvantage increases, the elasticity of labor supply decreases,

the monopsony discount increases, and the equilibrium posted wage decreases.

The third term adds on top a premium proportional to the marginal search cost

faced by the firms. As it gets harder for the firm to screen workers in their queue, they

prefer to delegate some of that self-selection to the workers by promising a higher wage.

The firms’ marginal search cost acts as the inverse of the elasticity of labor demand

in conventional models, analogous to the elasticity of labor supply determining the

monopsony discount. The competitive premium also depends positively on the ratio of

the overall number of firms considered by workers (δx) to the total number of workers

that apply to firms (δy). If firms are at a numerical disadvantage (δx/δy is small), this

increases the firms’ monopsony power and decreases the equilibrium wage.

Equation 2.8 is analogous to the standard oligopsony model. Here we show the

analogy following the notation of Boal and Ransom (1997). If the firm is facing an

upward sloping labor supply curve, described by w(L), and the firm maximizes ex-
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pected profit, computed as revenue net of the wage bill (π = R(L) − w(L) · L), then
profit maximization pins down the wage as the marginal product minus the inverse

semi-elasticity of labor supply: w = R′ −w′(L) · L. In our model, the first term axyfxy

represents the marginal product adjusted for strategic competition of firms for workers’

attention, captured by the queue composition axy, and the second term is the inverse

of the firm-level labor supply semi-elasticity zxy. The labor supply elasticity is derived

from the (multinomial logit) discrete choice decision of the workers, which reflects en-

dogenous responses to worker-job match heterogeneity and the information friction.

The third term in our model represents the labor demand semi-elasticity which arises

in the oligopsony model when e.g. revenue directly depends on the wage. This is true

in our model because a higher wage not only incentivizes workers to search harder, but

also incentivizes firms to screen less thoroughly, which also affects the matching rates.

While the labor supply elasticity is determined by search costs of workers, the labor

demand elasticity is deteremined by the search costs of firms, and both are modulated

by labor market tightness.

Thus, our model is a direct next step from the existing literature - putting together in

a single equation the models of oligopsony, models of job differentiation and search-and-

matching models. While the elements of our model have familiar interpretation, they

are derived from fundamentals — match preferences, search technology, endowments

of agents — in an internally consistent way and are therefore suitable for welfare and

policy analysis.

How do these three components evolve and interact to give the wage rates we saw

in Figure 3.1? In panels 2 and 4 of Figure 4.1 we show the three components and

the resulting wage for the best/unique equilibrium for horizontal and vertical shapes

of the surplus we saw before. Each component here is averaged across submarkets.

The marginal product averages to half of the surplus even though the components of

the queue composition axy vary depending on the shape of the surplus and the implied

sorting pattern. For the PAM equilibrium in the horizontal case the queue composition

matrix is diagonal with ones on the diagonal and zeros otherwise, while for the mixing

equilibrium in the vertical case the queue composition matrix is closer to uniform with

all elements close to one half.

The monopsony discount is negative and grows with the increase in search costs

of workers. We would have expected the monopsony discount to approach zero in the
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Figure 4.1: Equilibrium wage components for horizontal and vertical surplus

zero-cost limit, and if that was the case all of the equilibria would give a fair split of

the surplus in all of the directed search equilibria. Interestingly, in the zero-cost limit

the monopsony discount approaches zero for mixed equilibria, but remains sizeable for

pure-strategy equilibria. This is because in pure-strategy (assortative) equilibria the

workers put all of their attention towards one firm, and therefore not only θx → 0

but also
(
1− µy

nf
px (y)

)
→ 0. As these two terms in the numerator and denominator

approach zero at the same speed, the monopsony discount has a finite non-zero limit

as search costs tend to zero for assortative equilibria. For mixing equilibria, the limit

is zero.

The competitive premium is positive and grows with the increase in search costs

of firms. This component always approaches zero as search costs of firms tend to

zero. Thinking about the interaction of the three wage components, for low values of

costs, the equilibrium wage is determined by the sorting pattern that determines how

much the monopsony discount subtracts from the marginal product. As search costs

increase, both the monopsony discount and the competitive premium grow without

bound. Depending on which of the two grows faster, the equilibrium wage, confound

to stay between the outside option and the surplus, reaches either the upper bound or

the lower bound as costs tend to infinity. As we can see from the wage equation, which

of the two forces dominates is determined by the relative sizes of search costs, and by

the labor market tightness. To illustrate this dependence on labor market tightness, in

panels 1 and 3 of the same Figure we plot the wage decomposition for the same setups

but with a different level of labor market tightness: for 1 worker of each type there are 6
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firms of each type. In this case, as search costs grow, the competitive premium increases

faster than the monopsony discount, and the equilibrium wage quickly approaches the

upper bound.

For further comparison with the literature, we can also derive the equilibrium mark-

down. Here we need to note that we have assumed, without loss of generality, that the

outside option of workers is normalized to 0. For the definition and appropriate com-

putation of the markdown (and the labor supply elasticity) we need to calibrate the

size of the outside option b relative to the size of the surplus fxy. Taking into account

the outside option, the equilibrium markdown can be computed as:

fxy + b− ωxy − b

ωxy + b
=

1 + b
fxy

ωxy

fxy
+ b

fxy

− 1 =
1 + b

fxy

axy +
(1−ax)
ϕxyδy

θy
fxy

− 1
zxy

1
fxy

+ b
fxy

− 1

In standard models, wage markdowns are often treated as a direct function of labor

supply elasticity. In our framework, however, this relationship is mediated by equilib-

rium sorting and strategic wage posting. Although a semi-elasticity term (ωxy + b) zxy

enters the wage equation, there is no one-to-one mapping between this elasticity and

the resulting markdown. Instead, equilibrium wages and markdowns are shaped by five

interacting factors:

1. The workers’ marginal costs of search determine the labor supply elasticity and

the monopsony discount.

2. The firms’ marginal costs of search determine the labor demand elasticity and

the competitive premium.

3. The numerical (dis)advantage each firm and worker face in the market (labor

market tightness) attenuate both elasticities.

4. The strength and pattern of equilibrium sorting determines the starting point

for the equilibrium wage and markdown.

5. The first-mover advantage (the ability of firms to announce and pre-commit to

submarket-specific wage) gives the firms the ability to strategically manipulate wages

and extract the monopsony discount. Unlike this model, in a model of simultaneous

search with bargaining the competitive equilibrium implements the constrained social

optimum.

This theoretical analysis highlights several key drivers of monopsony power, includ-
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ing search costs, labor market tightness, and equilibrium sorting patterns. However,

the strength of these effects in realistic labor markets remains an open question. To

quantify these mechanisms and compare them to empirical benchmarks, we now turn

to numerical simulations using calibrated parameter values.

We calibrate the outside option of the workers b to approximately 70% of their

product of labor fxy+b, in the middle of the range of calibrations of DMP models. This

implies a value of b/fxy = 2.5 and a maximum markdown of 40%. For consistency, we

return to the horizontal and vertical surplus shapes considered in the previous section.

We consider a two-dimensional set of all combinations of costs θx = θy = θ and the

ratio of the number of jobs to workers µy/µx, a variable also known as labor market

tightness. For each combination of {θ, µy/µx}, we compute all the equilibria and the

socially optimal allocation.

In Figures 4.2 and 4.3 we show in six panels how the number of equilibria, monopsony

power of (share of the surplus going to) the firm, the elasticity of labor supply with

respect to the wage, the average equilibrium markdown, the socially optimal markdown,

and welfare — vary with search costs and labor market tightness. Figure 4.2 shows the

results for a horizontal structure of preferences, consistent with assumptions for column

3 of Figure 3.1, which produces positive assortative matching in the best equilibrium.

Figure 4.3 shows the results for a vertical shape of surplus, consistent with assumptions

for column 4 of Figure 3.1, which produces mixed sorting in the best equilibrium. In

both cases there is an area of low costs producing 3 equilibria: PAM, mixed, and NAM

— with only the mixed equilibrium surviving for higher costs in the vertical case, and

only PAM in the horizontal case.

Both Figures illustrate how the equilibria of the model gradually transform from

multiple directed search equilibria (for low costs, on the left) to a unique random

search wage posting equilibrium a la Burdett and Mortensen (for high costs, on the

right). Both Figures also illustrate how monopsony power changes with labor market

tightness, from pure monopsony and wages equal to outside options of workers (low

market tightness, at the bottom) to perfect competition and wages equal to the marginal

product of labor (high market tightness, at the top).

Overall, the patterns of monopsony power and markdowns are not very different be-

tween the two surplus calibrations. Outcomes corresponding to labor market tightness

in the range from 0.5 to 1.5, which are routinely observed in the U.S. labor market, pro-
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Figure 4.2: Equilibrium monopsony power and wage markdowns for horizontal case

Figure 4.3: Equilibrium monopsony power and wage markdowns for vertical case
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duce markdowns on the order of 30%-40%. This corresponds to extremely high levels

of monopsony power on the part of firms, capturing between 70% and 100% of match

surplus. Consistent with our theoretical derivations, the elasticity of labor supply is

tightly linked with the inverse of marginal search costs faced by workers. Therefore,

the empirical estimates of the firm-level labor supply elasticity which are usually in the

2-6 range4, put a relatively tight bound on the value of search costs θ which should be

in the 0.1-0.5 range. The bounds on the parameter range implied by empirical evidence

are shown in the Figures by the black polygons. As we can see from numerical simu-

lations, this is well above the level of costs, below which the model produces multiple

equilibria. This also suggests that both wage markdowns are unfairly high and the

market allocations are socially suboptimal.

What are the possible ways to correct the inefficient allocations and unfair wages?

Here we only provide some suggestions and leave more detailed analysis for future

research. As indicated by the top right panels of Figures 3.2, 3.3, 4.2, and 4.3, a con-

strained social planner would prescribe a redistribution scheme equivalent to increasing

wages promised to workers by about 20%, lowering wage markdowns towards the 10-

15% range. It would also suggest substantially taxing the firms’ part of the surplus to

reduce their incentive to screen. But this tax and redistribution scheme is unlikely to

work so long as the firms retain the first-mover advantage and ability to strategically set

wages. Note that the simultaneous search version of the model with ex-post bargaining,

described in Cheremukhin et al (2020), for the same fundamentals delivers the socially

optimal allocation of this model as the unique competitive equilibrium. Removing the

sequentiality and first-mover advantage of firms could go a long way towards ensuring

both efficiency and fairness. If the sequentiality of search is too deeply rooted and hard

to combat, another alternative would be to combat wage-posting and incentivize ex-post

bargaining with a coordinated effort to prop up the workers’ bargaining positions.

As an illustration, we compute competitive equilibria of the sequential targeted

search model replacing ex ante wage posting with an exogenously set ex post wage

bargaining. We jointly vary bargaining weights in all submarkets seeking the bargain-

ing weights that lead to highest welfare, which we call the optimal bargaining weight

equilibrium. In Figure 4.4 we show how the wages and welfare loss depend on the

4See Azar and Marinescu (2024a) for an overview of the the estimation methods and empirical
estimates, and Sokolova and Sorensen (2018) for a meta-analysis.
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Figure 4.4: Wages and welfare loss under wage posting and optimal bargaining

Figure 4.5: Strategies and wages under wage posting and optimal bargaining for θ = 0.1

search costs for the horizontal and vertical surplus shapes. In Figure 4.5 we compare

the strategies and wages prevailing under the competitive equilibria of ex ante wage

posting and optimal ex post wage bargaining for an intermediate value of search costs

θ = 0.1 (consistent with realistic levels of labor supply elasticity and unique equilib-

rium) for the same horizontal and vertical surplus shapes. We find that for both shapes

of the surplus switching to optimal ex post bargaining substantially improves welfare,

essentially removing welfare loss, which requires substantially higher wages than those

naturally prevail in wage posting equilibria. These results suggest that a much fairer

surplus split enforced through bargaining could lead to substantial welfare improve-

ments in the sequential model.
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Our model can be used for all kinds of policy evaluation.5 To study the effects of

changes in the minimum wage one could increase the outside option of workers in our

model and consider the effects on wages and matching rates. To study the effects of wage

transparency policies one could compare the model with ex ante wage posting with a

model that counterfactually enforces ex post bargaining. Since the model does not make

short-cut assumptions and the user controls preferences, technologies and endowments,

the model should be directly applicable to a wide range of policy questions.

5 Conclusion

This paper develops a unified theory of monopsony power based on information frictions

in job search. We model both firms and workers as choosing probabilistic targeting

strategies, subject to endogenous information costs. This framework nests random and

directed search as limiting cases and delivers a tractable wage-posting equilibrium with

a closed-form wage equation. Monopsony power in this setting arises not only from

labor supply elasticity but from five structural channels: information frictions on both

sides of the market, labor market tightness, equilibrium sorting, and the sequential

nature of wage setting.

We show how wage markdowns emerge endogenously from the interaction of these

forces and that equilibrium sorting patterns play a central role in shaping the degree of

monopsony power. In highly assortative environments with strong complementarities,

wages collapse toward the outside option even when labor supply is elastic, allowing

firms to capture nearly the full surplus. These outcomes are inefficient: a constrained so-

cial planner would prescribe lower targeting precision and higher wages, closing roughly

half of the markdown gap.

Our approach offers a tractable alternative to models that impose wage-setting

rules or estimate reduced-form elasticities. By deriving wages, applications, and sorting

jointly from primitives, we clarify the mechanisms behind monopsony and provide tools

5Azar and Marinescu (2024b) survey recent theoretical models of monopsony power and link them
to a broad set of labor market policies. They emphasize the importance of developing structural models
that can accommodate information frictions and strategic interactions when evaluating interventions
such as minimum wages, wage transparency mandates, and non-compete regulations. Our framework is
well-suited for such applications, as it nests key modeling approaches while preserving microfoundations
and tractability.
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for analyzing the efficiency and equity of market outcomes. This framework can be

extended to study policy design, wage floors, or labor market segmentation in settings

where information and strategic interaction jointly determine matching patterns and

pay.
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Appendix A: Directed Search Model Analysis

In this appendix, we solve for directed search equilibria in a simple environment with

2 worker and 2 firm types. Following the abbreviations from Burdett Shi and Wright

(BSW, 2001), who describe buyers and sellers instead of workers and firms, we denote

two worker types 1 and 2, and the two firm types we denote A and B.

We extend their assumptions in several respects. Our first departure: instead of

agents’ strategies being probabilities with which workers and firms look at each other,

we assume that there is a unit mass of agents of each type, and they decide which

fraction of that unit mass to send towards which type of agent. More specifically,

workers of type 1 send m1A mass to meet firms of type A and the remaining 1 −m1A

are sent to meet firms of type B. Workers of type 2 send m2B mass to meet firms

of type B and the remaining 1 − m2B are sent to meet firms of type A. Both the

reinterpretations of probabilities into masses and the default assignment of 1 to A and

2 to B are for convenience and without loss of generality. Similarly, firms of type A

send mass n1A to meet workers of type 1, 1− n1A to meet type 2, and firms of type B

send n2B to meet workers of type 2 and 1− n2B to meet type 1.

In a second extension of BSW, and consistent with conventional assumptions in

the directed search literature, we assume four meeting locations where each pair of

agents can meet separately: 1A, 1B, 2A, 2B. We also allow each firm to post differing

wage rates at these four locations. In BSW, all pairwise matches were identical and

produced identical surplus, therefore, the equilibrium surplus splits were assumed to

be identical in the locations controlled by the same firms. Since our extension allows

for heterogeneity and unrestricted surplus shapes, the increased number of locations

is natural. As we shall see, under the special case considered by BSW our model

produces identical results, but it is more general in allowing us to consider a wider

range of possibilities.

We allow for arbitrary shapes of surplus achieved by pairwise matches and denote

them f1A, f2A, f1B, f2B, all strictly greater than 0, and normalize the default outside

option of workers to 0. In BSW all values of the surplus equal 1. We denote the wages

posted by firms w1A, w2A, w1B, w2B respectively. Instead of each firm posting a single

wage rate, firms post different wages in worker-specific locations, or equivalently post

wage contracts conditional on productivity.
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The last and key element — we assume that each meeting location is characterized by

a matching technology which determines how many matches are formed between mass

m of workers and mass n of firms. The BSW paper makes calculations in expected value

terms and assumes that the number of matches formed is the product of probabilities. It

actually assumes without proof that if both workers show up at location A, their chances

of being picked by the firm are equal. As we shall see, it may be optimal for the firm to

choose unequal probabilities, and it is mostly a coincidence that for the specific surplus

considered in the BSW paper that optimal probability is indeed one half. To replicate

the predictions of the BSW model, we need to set the number of matches M (m,n) =

m · n. To represent the more conventional case of constant returns to scale (and make

the model similar to our targeted search model, both the simultaneous and sequential

versions) we also study the case M (m,n) =
√
m · n. We note here that although this

type of function has objectional properties, such as combinations for which the number

of matches exceeds the number of searchers on one side, M (m,n) > min (m,n), this

is without loss of generality since one can multiply the function by a small enough

constant, such as 1
2
, removing this objection without affecting any of the properties of

the model.

The game is sequential, and the timing works as follows. First, each firm posts wages

in each of the two locations. Then each worker and each firm decides how to allocate

their unit mass between the two available locations to maximize expected payoffs. The

problem of worker 1 is to maximize her expected payoff:

Ew1 = mA1 ·mrw1A · wA1 + (1−mA1) ·mrw1B · wB1 → maxmA1
,

where the worker takes matching rates mrw1A = M(m1A,n1A)
m1,A

, mrw1B = M(1−m1A,1−nB2)
1−m1,A

and posted wages as given. The solution to this linear problem is:

mA1 =


1,

∈ [0, 1],

0,

mrw1A · wA1 > mrw1B · wB1

mrw1A · wA1 = mrw1B · wB1

mrw1A · wA1 < mrw1B · wB1

Similarly, the problem of worker 2 is to maximize her expected payoff:

Ew2 = (1−mB2) ·mrw2A · wA2 +mB2 ·mrw2B · wB2 → maxmB2

where the worker takes matching rates mrw2A = M(1−mB2,1−nA1)
1−mB2

, mrw2B = M(mB2,nB2)
mB2

and posted wages as given. The solution to this linear problem is:
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mB2 =


1,

∈ [0, 1],

0,

mrw2A · wA2 < mrw2B · wB2

mrw2A · wA2 = mrw2B · wB2

mrw2A · wA2 > mrw2B · wB2

Firm A maximizes her expected payoff:

EπA = nA1 ·mrf1A · (fA1 − wA1) + (1− nA1) ·mrf2A · (fA2 − wA2) → maxnA1,wA1,wA2

where the firm considers its effect on matching rates mrf1A = M(m1A,n1A)
n1A

, mrf2A =
M(1−mB2,1−nA1)

1−nA1
. It also chooses wages, internalizing their interaction with the matching

rate, which nevertheless needs to respect the prevailing relationship of indifference for

each worker. It takes the strategies of the other firm as given, however.

Consider first wage setting for location 1A. If worker 1 plays a pure strategy m1A

equal to 0 or 1, the firm can take the matching rate as given and maximize (fA1 − wA1).

This implies that the wage wA1 can be set arbitrarily close to 0, yet above 0, since a

wage equal to 0 would break the optimality of the pure strategy played by the worker.

If worker 1 is indifferent and plays a mixed strategy, the firm aims to choose a

wage level taking into account how that wage rate would influence the choice of the

worker’s strategy mA1, how that would affect the matching rate mrw1A as it would move

(opposite) with wA1 to preserve the indifference: mrw1A · wA1 = mrw1B · wB1. We can

therefore write the problem of the firm with respect to wage wA1 as follows:
M(mA1,nA1)

nA1
· (fA1 − wA1)− > maxnA1,wA1

s.t. M(mA1,nA1)
mA1

· wA1 = mrw1B · wB1

Λ = M(mA1,nA1)
nA1

· (fA1 − wA1) + λ
(
mrw1B · wB1 − M(mA1,nA1)

mA1
· wA1

)
− > maxnA1,wA1

FOCnA1
:

(
∂M(mA1,nA1)

∂nA1
− M(mA1,nA1)

nA1

)
· (fA1−wA1)

nA1
= λ∂M(mA1,nA1)

∂nA1
· wA1

mA1

FOCwA1
: −M(mA1,nA1)

nA1
− λM(mA1,nA1)

mA1
= 0

Find λ and substitute:

(
∂M(mA1,nA1)

∂nA1
−M(mA1,nA1)

nA1

)
∂M(mA1,nA1)

∂nA1

· (fA1−wA1)
wA1

= −1

wA1 =
(
1− ∂M(mA1,nA1)

∂nA1

nA1

M(mA1,nA1)

)
fA1 = αfA1

The equilibrium posted wage is a fraction of the surplus equal to one minus the elas-

ticify of the matching function with respect to the firm’s decision. When the worker

needs to remain indifferent, the optimal wage decouples from overall optimization and

equals a fraction of the surplus, which depends on the curvature of the matching func-

tion. The same principle works for all four wages posted by firms. In addition, the firm

must itself be indifferent between the options to optimize the wage that determines the

payoff of any one of the options. Conditional on the wage decision and the strategies
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of workers, the problem of the firm remains how to optimally distribute its mass:

EπA = nA1 ·mrf1A · (fA1 − wA1) + (1− nA1) ·mrf2A · (fA2 − wA2) → maxnA1

nA1 =


1

nA1

0

mrf1A · (fA1 − wA1) > mrf2A · (fA2 − wA2)

mrf1A · (fA1 − wA1) = mrf2A · (fA2 − wA2)

mrf1A · (fA1 − wA1) < mrf2A · (fA2 − wA2)
Similarly, for the second firm,

EπB = (1− nB2) ·mrf1B · (fB1 − wB1) + nB2 ·mrf2B · (fB2 − wB2) → maxnB2

nB2 =


1

nB2

0

mrf1B · (fB1 − wB1) < mrf2B · (fB2 − wB2)

mrf1B · (fB1 − wB1) = mrf2B · (fB2 − wB2)

mrf1B · (fB1 − wB1) > mrf2B · (fB2 − wB2)
Returning to the description of wages, wage wA1 needs to be set optimally if either

of the conditions involving it is satisfied as equality. Therefore,

wA1 =


αfA1,

αfA1,

0 + ε,

mrw1A · wA1 = mrw1B · wB1

mrf1A · (fA1 − wA1) = mrf2A · (fA2 − wA2)

else

wA2 =


αfA2,

αfA2,

0 + ε,

mrw2A · wA2 = mrw2B · wB2

mrf1A · (fA1 − wA1) = mrf2A · (fA2 − wA2)

else

,

wB1 =


αfB1,

αfB1,

0 + ε,

mrw1A · wA1 = mrw1B · wB1

mrf1B · (fB1 − wB1) = mrf2B · (fB2 − wB2)

else

,

wB2 =


αfB2,

αfB2,

0 + ε,

mrw2A · wA2 = mrw2B · wB2

mrf1B · (fB1 − wB1) = mrf2B · (fB2 − wB2)

else

.

This completes the description of optimal strategies {mA1,mB2, nA1, nB2} and wages

{w1A, w2A, w1B, w2B}. Any internally consistent set of these variables that satisfies the

optimality conditions is an equilibrium. However, this intersection can be tricky.

First, note that the pure strategy combinations {mA1,mB2, nA1, nB2} = {1, 1, 1, 1}
and {0, 0, 0, 0} with corresponding to wages {w1A, w2A, w1B, w2B} = {ε, ε, ε, ε} approaching
0 are always equilibria. We denote them PAM and NAM representing positive and neg-

ative assortative matching. It is easy to check and verify for PAM:

mrw1A = 1,mrw1B = 0,mrw2A = 0,mrw2B = 1,mrf1A = 1,mrf2A = 0,mrf1B =

0,mrf2B = 1, wA1 > 0 wB2 > 0 (fA1 − wA1) > 0 (fB2 − wB2) > 0

Same for NAM:
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mrw1A = 0,mrw1B = 1,mrw2A = 1,mrw2B = 0,mrf1A = 0,mrf2A = 1mrf1B =

1,mrf2B = 0 wB1 > 0 wA2 > 0 (fA2 − wA2) > 0 (fB1 − wB1) > 0.

When the matching function is symmetric CRS some rates are undetermined, but

we can consider strategies simultaneously approaching 0 and 1 and take the limiting

cases: mrw1A = 1,mrw1B = 1,mrw2A = 1,mrw2B = 1,mrf1A = 1,mrf2A = 1,mrf1B =

1,mrf2B = 1 wA1 = 0 + ε1 wA2 = 0 + ε2 wB1 = 0 + ε3 wB2 = 0 + ε4

PAM: wA1 > wB1, wA2 < wB2, (fA1 − wA1) > (fA2 − wA2) , (fB1 − wB1) < (fB2 − wB2)

Can be satisfied if: fA1 + fB2 > fA2 + fB1

NAM: wA1 < wB1, wB2 < wA2, (fA1 − wA1) < (fA2 − wA2) , (fB2 − wB2) < (fB1 − wB1)

Can be satisfied if: fA1 + fB2 < fA2 + fB1

Therefore, at least one of these would be an equilibrium in the limit even for the

symmetric CRS case.

There is also a possibility of a mixing equilibrium where either all of the agents

play mixed strategies, or only some. For instance, the equilibrium may take the form

{mA1, 0, nA1, 0} or {0,mB2, 0, nB2}, where the remaining masses are in the interval

(0, 1). The former is a feature of both the BSW model and the symmetric CRS model,

and the latter is a feature of the symmetric CRS model.

First, consider the fully mixed equilibrium for the symmetric CRS model. After

substituting interior wages and matching rates, strategies have to satisfy the following

equations simultaneously:
√
mA1nA1

mA1
∗ fA1 =

√
(1−mA1)(1−nB2)

(1−mA1)
∗ fB1

√
mB2nB2

mB2
∗ fB2 =

√
(1−mB2)(1−nA1)

(1−mB2)
∗ fA2

√
mA1nA1

nA1
∗ fA1 =

√
(1−mB2)(1−nA1)

(1−nA1)
∗ fA2

√
mB2nB2

nB2
∗ fB2 =

√
(1−mA1)(1−nB2)

(1−nB2)
∗ fB1

Combining these quickly leads to the conclusion that this may only work if fA1 ∗
fB2 = fB1 ∗ fA2. While we cannot derive specific strategies m and n, one can show that

the matching rates coming out of this equilibrium would have to satisfy:

M =


√

(f1B)2(f2A)2

((f2B)2+(f1B)2)((f2B)2+(f2A)2)

√
(f1A)2(f2B)2

((f1A)2+(f2A)2)((f2B)2+(f2A)2)√
(f1A)2(f2B)2

((f1A)2+(f1B)2)((f2B)2+(f1B)2)

√
(f1B)2(f2A)2

((f1A)2+(f1B)2)((f1A)2+(f2A)2)


For the knife-edge case fxy =

[
2 1

1 0.5

]
, the matching rate equals M =

[
0.8 0.4

0.4 0.2

]
.
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This is exactly the mixing equilibrium we get in the zero-cost limit of the sequential

targeted search model. However, as our derivation shows, the equations are contra-

dictory and should not generate a mixed equilibrium unless fA1 ∗ fB2 = fB1 ∗ fA2.

Nevertheless, for other cases, such as the horizontal surplus fxy =

[
2 1

1 2

]
and vertical

surplus fxy =

[
2 1

1 0.4

]
, we get a mixing equilibrium in the zero-cost limit with match-

ing rates quite similar to the patterns prescribed by the formula: M =

[
0.2 0.8

0.8 0.2

]
and

M =

[
0.86 0.33

0.33 0.2

]
respectively.

Now consider the partially mixed case for the symmetric CRS model. Consider the

case {mA1, 0, nA1, 0}, the equilibrium must satisfy:

mrw1A · wA1 = mrw1B · wB1

mrf1A · (fA1 − wA1) = mrf2A · (fA2 − wA2)

wA1 = αfA1 wB1 = αfB1 wA2 = αfA2 wB2 = 0 + ε

mrw2A · wA2 > mrw2B · wB2

mrf1B · (fB1 − wB1) > mrf2B · (fB2 − wB2)

Substitute wages back into equations:

mrw1A · αfA1 = mrw1B · αfB1

mrf1A · (1− α) fA1 = mrf2A · (1− α) fA2

mrw2A · αfA2 > mrw2B · ε
mrf1B · (1− α) fB1 > mrf2B · (fB2 − ε)

Substitute strategies into matching rates:

mrw1A = M(m1A,n1A)
m1,A

,mrw1B = M(1−m1A,1)
1−m1,A

mrw2A = M(1,1−nA1)
1

,mrw2B = M(0,0)
0

mrf1A = M(m1A,n1A)
n1A

,mrf2A = M(1,1−nA1)
1−nA1

mrf1B = M(1−m1A,1)
1

,mrf2B = M(0,0)
0

Substitute matching rates as well:
M(m1A,n1A)

m1,A
· αfA1 =

M(1−m1A,1)
1−m1,A

· αfB1

M(m1A,n1A)
n1A

· (1− α) fA1 =
M(1,1−nA1)

1−nA1
· (1− α) fA2

M(1,1−nA1)
1

· αfA2 >
M(0,0)

0
· ε

M(1−m1A,1)
1

· (1− α) fB1 >
M(0,0)

0
· (fB2 − ε)
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The inequalities are clearly satisfied since M(0,0)
0

= 0.

We have two equations with respect tom1A, n1A, which would have a unique solution

for most specific matching functions.
M(m1A,n1A)

m1,A
fA1 =

M(1−m1A,1)
1−m1,A

fB1

M(m1A,n1A)
n1A

fA1 =
M(1,1−nA1)

1−nA1
fA2

Consider the symmetric Cobb-Douglas case M =
√
m · n:

n1A (1−m1A) = m1A

(
fB1

fA1

)2
m1A (1− n1A) = n1A

(
fA2

fA1

)2
Has the solution: m1A =

1−
(

fB1
fA1

)2( fA2
fA1

)2

1+
(

fB1
fA1

)2 n1A =
1−

(
fB1
fA1

)2( fA2
fA1

)2

1+
(

fA2
fA1

)2

This replicates our numerical results in Figure 3.3.

n1A =
1−

(
fB1
fA1

)2( fA2
fA1

)2

1+
(

fA2
fA1

)2

∣∣∣∣∣
fA1=2,fB1=1,fA2=1

= 3
4

m1A =
1−

(
fB1
fA1

)2( fA2
fA1

)2

1+
(

fB1
fA1

)2

∣∣∣∣∣
fA1=2,fB1=1,fA2=1

= 3
4

√
n1Am1A = 3

4

√
(1− n2B) (1−m1A) =

√
(1−m1A) (1− n2B) =

1
2

√
n2Bm2B = 0.

Thus, for the vertical surplus fxy =

[
2 1

1 a < 0.5

]
, we get a semi-mixed equilibrium

which produces the equilibrium matching rate M =

[
0.75 0.5

0.5 0

]
. As we shall see below,

this will be the socially optimal allocation for this surplus pattern.

BSW case: Consider also the BSW case M (m,n) = m · n:
mrw1A = n1A,mrw1B = 1− nB2

mrw2A = 1− nA1,mrw2B = nB2

mrf1A = m1A,mrf2A = 1−mB2

mrf1B = 1−m1A,mrf2B = mB2

There are the same two pure strategies equilibria: PAM and NAM.

There is also a fully mixed-strategy equilibrium, that satisfies:

n1A · fA1 = (1− nB2) · fB1

(1− nA1) · fA2 = nB2 · fB2

m1A · fA1 = (1−mB2) · fA2

(1−m1A) · fB1 = mB2 · fB2
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These have a closed form solution:

n1A = fA2fB1−fB2fB1

fA2fB1−fB2fA1
, nB2 =

fA2fB1−fA2fA1

fA2fB1−fB2fA1
,m1A = fA2fB1−fA2fB2

fA2fB1−fB2fA1
,mB2 =

fA2fB1−fA1fB1

fA2fB1−fB2fA1

For the simple limiting case of fA2 = fB1 = 1, fB2 = fA1 = 1 + ε → 1, it is easy to

check that n1A = m1A = n2B = m2B = 1
2
.

We have just fully reconstructed the strategies and wage rates of the BSWmodel and

of the symmetric Cobb-Douglas numerical examples in the paper when the search/information

costs equal zero. We find that in the 2x2 case there are always at least two pure strategy

equilibria, representing positive and negative assortative matching. There can also be

a fully-mixed equilibrium and there can be semi-mixed equilibria (when not all agents

play mixed strategies). Our derivation demonstrates how cumbersome it can be to

check all the combinations of equalities and inequalities of various conditions in the di-

rected search model even in the simple 2x2 case, and that directed search always gives

multiple equilibria. In the sequential targeted search model in the zero-cost limit of the

2x2 symmetric CRS model — we always find 3 equilibria — two pure-strategy (PAM

and NAM) and one mixed-strategy equilibrium. This structure is fully covered by the

predictions of the directed search model described above, but not all the directed search

equilibria survive for small positive costs. It is much easier to consider numerically our

targeted search model when approaching the zero-cost limit to find all the relevant

equilibria and their properties. This would suggest that our model can serve as a great

diagnostic tool to study the equilibria of directed search models, and their properties.

As in reality the costs are positive, our model also allows the researcher to discard some

of the directed search equilibria, which do not survive for any positive costs, indicating

that they are unlikely to ever be observed in reality.

Another important question is that of social efficiency of directed search equilibria.

Consider the planner’s solution in general, and in each case. The planner simply sums

up the expected surplus of matches and decides how to allocate masses of workers and

firms:

Ω =

[
M (m1A, n1A) fA1 +M (1−m2B, 1− n1A) fA2

+M (1−m1A, 1− n2B) fB1 +M (m2B, n2B) fB2

]
→ maxmA1,mB2,nA1,nB2

The first-order conditions are simply:
∂M(m1A,n1A)

∂m1A
fA1 =

∂M(1−m1A,1−n2B)
∂(1−m1A)

fB1

∂M(1−m2B ,1−n1A)
∂(1−m2B)

fA2 =
∂M(m2B ,n2B)

∂m2B
fB2

∂M(m1A,n1A)
∂n1A

fA1 =
∂M(1−m2B ,1−n1A)

∂(1−n1A)
fA2
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∂M(1−m1A,1−n2B)
∂(1−n2B)

fB1 =
∂M(m2B ,n2B)

∂n2B
fB2

These are interior conditions for efficiency, and do not hold all at the same time.

Only some may hold, or none at all. Pure-strategy corner solutions, for which none of

these conditions hold — are also candidates. Different such combinations all need to be

considered as candidates for efficiency, and only one would lead to the highest welfare.

We can, however, compare them to the equilibrium conditions that we have — for

the cases where an agent needs to be indifferent. For instance, consider the mixed-

strategy condition for worker 1.

mrw1A · wA1 = mrw1B · wB1

We can substitute definitions of matching rates and the posted wages to obtain:
M(mA1,nA1)

mA1
·
(
1− ∂M(mA1,nA1)

∂nA1

nA1

M(mA1,nA1)

)
fA1 =

= M(1−m1A,1−nB2)
1−m1,A

·
(
1− ∂M(1−m1A,1−nB2)

∂(1−nB2)
(1−nB2)

M(1−m1A,1−nB2)

)
fB1

Compare this with the corresponding planner’s condition for efficiency:
∂M(m1A,n1A)

∂m1A
fA1 =

∂M(1−m1A,1−n2B)
∂(1−m1A)

fB1

For efficiency of equilibria, the matching function must have constant returns to scale

and a constant elasticity with respect to both inputs:

∂M (mA1, nA1)

∂nA1

nA1

M (mA1, nA1)
+

∂M (m1A, n1A)

∂m1A

mA1

M (mA1, nA1)
= 1.

This implies that matching functions need to be Cobb-Douglas with constant pa-

rameters for the conditions for equilibria to become equivalent to conditions for effi-

ciency. Each equilibrium of the directed search model satisfies some conditions for an

extremum, but some of them are local maxima and some are local minima. As the con-

ditions are equivalent, but there can be only one social optimum - one of the equilibria

of the directed search model must implement the planner’s solution, and the others are

suboptimal.

To illustrate these results, consider again the numerical cases with symmetric CRS

described above. When fA1 ∗ fB2 > fB1 ∗ fA2 - the pure-strategy PAM equilibrium is

socially efficient, and this allocation is supported in equilibrium by wages arbitrarily

close to 0. When fA1 ∗ fB2 < fB1 ∗ fA2 - the semi-mixed-strategy equilibrium (e.g.

with the number of matches M =

[
0.75 0.5

0.5 0

]
) is the socially optimal outcome. In this

equilibrium, wages in three of four matching locations — those for which the workers
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and firms need to be indifferent — are equal to half of the surplus, while in the fourth

matching location the wage can be set arbitrarily close to zero. This structure of

socially-optimal allocation is preserved for positive costs, but the corresponding semi-

mixing equilibrium disappears for positive costs. In this case, for arbitrarily small

positive costs, all the competitive equilibria are substantially socially inefficient.

There are two major takeaways from our derivations, compared with conventional

wisdom regarding directed search models:

1. Equilibrium conditions for directed search equilibria are the same as for the

planner’s solution if matching technology is Cobb-Douglas. However, not all of the

conditions must be satisfied as equalities. Consequently, there are always multiple

equilibria in pure strategies, and there can also be equilibria in mixed and semi-mixed

strategies. Only one of these directed search equilibria achieves the social optimum.

The semi-mixed equilibria may not survive for positive costs, leading to cases of social

inefficiency of all of the surviving competitive equilibria for arbitrarily small positive

costs of search.

2. For agents that are playing mixed strategies in equilibrium, wages are set by

splitting the surplus in proportions dictated by the elasticity of the matching function.

For pure strategy equilibria, the wage is undetermined - it can take any value between

0 and fxy. The firm with a first-mover advantage will set the wage arbitrarily close to

zero (outside option of the worker).

In the symmetric CRS case that we considered in the main text, the condition under

which the semi-mixing equilibrium is socially optimal in the 2x2 case is: fB2fA1 <

fA2fB1. This case leads to inefficiency of all competitive equilibria in the zero-cost

limit. Otherwise, a pure strategies equilibrium (PAM or NAM) is socially optimal.

In the mixing equilibrium, wages pay a nontrivial fraction of the surplus (half in the

symmetric case). Pure strategy equilibria produce assortativeness and lead to posted

wages essentially equal to zero.
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