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Abstract

The recent behavior of the U.S. Beveridge curve — its outward shift and changing slope — has

puzzled economists and is difficult to reconcile with standard explanations based on gradual structural

change or declining matching efficiency. We propose a dual-vacancy model in which firms post two

distinct types of vacancies: those targeting unemployed workers and those designed to hire already-

employed workers through poaching. These two types of vacancies operate in segmented sub-markets

with separate matching processes. Using U.S. labor market data from 1978 to 2024, we estimate the

evolution of both types of vacancies, and show that the share of poaching vacancies has risen significantly

since the mid-2010s. This increase is closely linked to an upward trend in their estimated profit-cost ratio.

When we adjust the Beveridge curve to include only non-poaching vacancies, its recent puzzling behavior

disappears. We estimate the model using a flexible Bayesian framework across multiple data constructions

and sectors, and find consistent evidence supporting the dual-vacancy mechanism.
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1 Introduction

The negatively sloped relationship between the number of unemployed individuals and the number of job

openings over the business cycle, commonly known as the Beveridge curve, has served for decades as a central

diagnostic tool in macroeconomics. First formalized in the postwar period, the curve provides a visual and

quantitative representation of labor market tightness and matching efficiency, and has long been used by

policymakers to assess the state of the labor market and gauge the distance to full employment.

In recent years, however, the behavior of the Beveridge curve has become increasingly difficult to in-

terpret. As shown in Figure 1, the empirical curve has not only shifted outward but also changed slope

in ways that depart significantly from historical patterns. Whereas previous recessions were characterized

by movements along a relatively stable Beveridge curve with gradual shifts in intercept over time, the most

recent episode—spanning the mid-2010s through the post-pandemic recovery—has seen abrupt and repeated

changes in both slope and position. These changes have proven difficult to explain using standard narratives

such as declining matching efficiency, structural mismatch, or changing labor force participation. This new

behavior of the Beveridge curve presents an important puzzle.

In this paper, we offer a new explanation for this puzzle by proposing a simple but important refinement

of standard search-and-matching models: the distinction between vacancies designed to hire unemployed

workers and those intended to hire already-employed workers. While it is well understood that firms can

choose to hire either from the pool of unemployed or by poaching workers already employed elsewhere,

existing macroeconomic models typically treat all job vacancies as homogeneous. In contrast, we introduce

a dual-vacancy model in which firms post two distinct types of vacancies: (i) those intended to be filled

by unemployed individuals (non-poaching vacancies), and (ii) those targeting already-employed workers

(poaching vacancies). These two vacancy types operate in segmented sub-markets with separate matching

processes.

This distinction has direct implications for how we interpret movements in job vacancies. Vacancies

targeting unemployed workers affect both the unemployment rate and the overall level of employment. In

contrast, vacancies filled by poaching do not affect unemployment: they involve the reallocation of workers

across jobs and may raise wages or improve match quality, but they do not alter employment aggregates.

Therefore, in our framework, only non-poaching vacancies should be considered in the Beveridge curve

relationship. Once we adjust the Beveridge curve to reflect this, the apparent breakdown in its behavior

disappears.

To quantify these mechanisms, we estimate the dual-vacancy model using U.S. labor market data spanning

1978 to 2024. We draw on a wide array of data sources, including the Current Population Survey (CPS),

the Job Openings and Labor Turnover Survey (JOLTS), and reconstructed historical vacancy measures, as

well as flow data from recent literature. This allows us to construct consistent time series of stocks and

transitions among employment, unemployment, and nonparticipation.

Our estimation recovers the time path of each vacancy type and characterizes their dynamics through
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Figure 1: Beveridge Curves over Business Cycles.

Source: BLS. Notes: Henderson moving averages of the unemployment and vacancy rates are shown.

underlying drivers such as firms’ perceived profitability of posting vacancies and the efficiency of the matching

process. While we cannot separately identify these two components at business-cycle frequencies, we assume

that matching efficiency evolves smoothly over time.1 Under this assumption, the short-run variation we

estimate reflects both shifts in the profitability of vacancy creation and modest fluctuations in matching

efficiency.

Importantly, since the literature lacks consensus on how to best measure job flows, particularly EE rates
1Matching efficiency and vacancy profitability are not separately identified in our framework. Both enter the model in

a single composite term and affect hiring through the same structural channel. Without fundamentally new restrictions or

data (e.g., firm-level cost or profit measures), these components remain indistinguishable. Our identifying assumption that

matching efficiency evolves smoothly over time reflects a common finding in the literature. For instance, Şahin et al. (2014)

find that compositional mismatch across sectors accounts for much of the perceived decline in matching efficiency during the

Great Recession. This supports the view that true matching efficiency likely changes gradually, if at all, rather than fluctuating

sharply at business-cycle frequencies.

3



and hires, we estimate the model under six plausible data configurations, spanning all combinations of CPS

and JOLTS inputs and two alternative EE rate constructions. Our main findings hold robustly across all of

them.

While direct data on vacancy intentions are not available, largely because equal opportunity employment

laws prevent firms from stating explicit preferences for employed or unemployed applicants, we address

this challenge by evaluating the extent to which our model fits the observed data better than a standard

single-market model. We find that the dual-vacancy framework provides a significantly better fit to the

data, particularly in its ability to jointly match the observed behavior of hires from unemployment and from

employment. This improved fit reflects the fact that the responsiveness of these two flows to vacancy rates

differs substantially — a feature the standard model cannot accommodate with a single elasticity.

In addition to showing that the dual-vacancy model fits the data better, we go further by explaining

what drives the dynamics of the estimated vacancy split. A key contribution of the paper is a closed-form

identification result that links the evolution of each vacancy type to the observed behavior of unemployment,

hires from unemployment, total vacancies, and job-to-job transitions. This decomposition allows us to isolate

the relative contribution of non-poaching versus poaching vacancies over time. We show that the increase

in poaching vacancies since the mid-2010s is primarily driven by a rising trend in their estimated profit-cost

ratio, a pattern that predates the pandemic and persists across sectors.

Although our paper does not focus on policy analysis, our results have implications for how vacancy

data should be interpreted in macroeconomic settings. When the share of poaching vacancies is large and

rising, a decline in aggregate vacancies may translate into only a modest increase in unemployment. In

such environments, aggregate vacancy measures may overstate the extent of labor market tightness that is

relevant for the unemployed. This insight helps reconcile the recent coexistence of historically high vacancy

rates and low unemployment with relatively mild changes in unemployment in response to shifts in labor

demand. We return to these implications in the conclusion.

The model we estimate is statistical in nature, but closely aligned with canonical search-and-matching

theory. It incorporates constant-returns-to-scale matching functions, free-entry conditions for vacancy cre-

ation, and a segmented structure for unemployed and employed job seekers. We include mechanisms to

account for cross-matching between vacancy types, on-the-job search, and flows into employment from out

of the labor force. Although our framework is not derived from micro-foundations or optimal choice behavior,

its equilibrium structure is consistent with widely used theoretical models in the literature. We estimate

the model using Bayesian methods, which offer a transparent and flexible approach to inference across al-

ternative data constructions. Bayesian estimation facilitates joint estimation of trends and business-cycle

fluctuations, allows straightforward incorporation of prior information, and ensures convergence in settings

where multiple data sources and specifications are used.

Across six data configurations and nine major sectors of the U.S. economy, we find robust and consistent

evidence supporting the dual-vacancy framework. Our main empirical result is that the share of poaching

vacancies has increased substantially and persistently since the mid-2010s, well before the onset of the
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COVID-19 pandemic. This rise is strongly associated with an upward trend in the estimated profit-cost

ratio of these vacancies, suggesting a structural shift in the incentives for firms to recruit already-employed

workers. We estimate that poaching vacancies now account for a majority of all job openings in many sectors.

When we remove these vacancies from the Beveridge curve, leaving only non-poaching vacancies, the recent

shifts and slope changes disappear, restoring a stable relationship between unemployment and job openings.

These findings suggest that much of the recent turbulence in the Beveridge curve stems not from structural

mismatches or declining matching efficiency, but from a shift in the composition of labor demand toward

poaching.

Our analysis sheds new light on the medium-term dynamics of the U.S. labor market and provides a

framework for interpreting aggregate vacancy data in the presence of firm-side market segmentation. While

our paper is not focused on policy, our results suggest that conventional measures of labor market tightness

may need to be reinterpreted when the composition of vacancies changes significantly over time. In particular,

we show how the estimated structural trends in vacancy composition can be used to detrend aggregate

vacancy and quit series, providing a clearer view of cyclical labor market dynamics. The finding that

poaching vacancies have become more prevalent also raises questions for future work regarding their causes

(technological, organizational, regulatory) and their implications for wages, productivity, and macroeconomic

adjustment.

Our paper contributes to three strands of the literature. First, we build on work analyzing the Beveridge

curve, the inverse relationship between unemployment and vacancies, originally noted by Beveridge (1944)

and formalized by Dow and Dicks-Mireaux (1958). This relationship has been studied extensively in both

U.S. (e.g., Diamond and Şahin, 2014; Ahn and Crane, 2020) and international contexts (Hobijn and Şahin,

2012; Bonthuis et al., 2016), with recent shifts, especially outward movement and flattening, spurring renewed

interest (Elsby, Michaels, and Ratner, 2015). We offer a new explanation for these shifts based on vacancy

composition: once we exclude poaching vacancies, the Beveridge curve regains stability, narrowing the range

of needed explanations.

These recent shifts have fueled both academic and policy debates. Lubik (2021) links them to reduced

matching efficiency from sectoral change; Rodgers and Kassens (2022) cite altered incentives and demograph-

ics; others point to changes in job search technology. Most of these assume homogeneous vacancies. We

instead highlight a rising share of vacancies targeting employed workers, altering the relationship between ag-

gregate vacancies and unemployment. Our mechanism complements structural mismatch and friction-based

explanations while implying that, during periods of tightening (e.g., Figura and Waller, 2022; Blanchard et

al., 2022), unemployment may respond less to vacancy fluctuations due to shifts in labor demand composition.

Second, we contribute to the literature on matching functions. Traditional models (Pissarides, 1985, 2000;

Mortensen and Pissarides, 1994) use a single function matching all job seekers to total vacancies. We instead

estimate separate matching functions for vacancies targeting unemployed and employed workers, finding

that this structure fits the data far better. A central result is that the elasticity of matching with respect

to unemployment (α) is low — between 0.1 and 0.3 — well below standard estimates of 0.5–0.7 (Broersma

and van Ours, 1999, Petrongolo and Pissarides, 2001). Our findings align with Gottfries and Stadin (2024),
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who also find little evidence that higher unemployment increases vacancy filling speed, reinforcing our view

that vacancy composition, not matching speed, drives Beveridge curve shifts.

Third, we contribute to the literature on labor market segmentation. Prior work has emphasized segmen-

tation among workers: for example, Hall and Kudlyak (2020) and Ahn et al. (2022) identify heterogeneity

in job seeker behavior. We extend segmentation to the firm side, estimating the composition of vacancies

by intended hire type. While such targeting is not directly observable, we infer the split and its drivers,

showing that the share of poaching vacancies has risen alongside their profit-cost ratio. This complements

Menzio and Shi (2011), who model similar vacancy types in a directed search framework. Related work by

Faberman et al (2022), and See, Birinci, and Wee (2024) documents systematic differences in job search

behavior and transitions by employment status, supporting our model’s behavioral foundation.

Our findings also relate to recent work on vacancy heterogeneity. Qiu (2022) argues that many vacancies

are unfilled or not seriously pursued, overstating labor demand. In a complementary vein, we show that

even filled vacancies differ in macro impact depending on their intended hire. Research on vacancy chains

further supports our approach: Fujita and Nakajima (2016) show that poaching can trigger cascades of

follow-up vacancies, while Elsby, Gottfries, Michaels, and Ratner (2025) provide direct evidence that many

U.S. vacancies result from replacement hiring rather than net job creation. Mercan and Schoefer (2020)

quantify how such chains shape aggregate vacancy dynamics. Together, these studies reinforce our finding

that rising vacancies often reflect churn among employed workers, not increased hiring of the unemployed.

In sum, our dual-vacancy framework offers a new lens on Beveridge curve dynamics and labor market

tightness. It also cautions against interpreting aggregate vacancy data as a proxy for slack when poach-

ing dominates vacancy growth. Beyond improving fit, our structure lays a foundation for future models

incorporating vacancy types, search channels, and segmented labor market adjustment.

The paper is organized as follows. Section 2 presents the dual-vacancy model. Section 3 describes the data

sources and measurement strategy. Section 4 presents our main empirical estimates and model parameters.

Section 5 analyzes the implications of our results for interpreting the Beveridge curve. Section 6 compares

the fit of the dual-vacancy model to that of the standard single-vacancy framework. Section 7 concludes

with a discussion of broader implications and directions for future research.

2 Dual Beveridge Curve Model

Our statistical model builds on standard search-and-matching frameworks but does not explicitly model

optimizing behavior. Instead, we specify matching functions, flow identities and equilibrium conditions

rooted in canonical theory. These conditions will be familiar to readers from the search and matching

literature. Rather than deriving each equation from first principles, we adopt a reduced-form approach that

emphasizes identification and tractability while retaining a close structural link to the underlying theory.

The labor market in period t is characterized by a number of unemployed workers Ut searching for jobs,
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and a number of employed workers Et, making together the labor force:

Lt = Ut + Et. (1)

Firms interested in employing workers post a number of vacancies Vt. A subset of employed workers,

Ht, are interested in better job opportunities and actively search on the job. Some firms are interested in

experienced workers and know that there is supply of such workers among the employed, so they design a

subset of vacancy postings Vϵ,t specifically to poach already employed workers. The rest of the vacancies

Vu,t (presumably low-level or entry positions) will consider and hire mostly unemployed workers. The total

number of vacancies is a combination of these two types:

Vt = Vu,t + Vϵ,t. (2)

The unemployed Ut search for non-poaching vacancies Vu,t and get hired according to a standard constant-

returns-to-scale matching function:

Mu,t = Bu,tU
α
t V

1−α
u,t ,

where Mu,t is the number of hires from the unemployment pool, α ∈ [0, 1] is the matching elasticity, and

Bu,t characterizes the efficiency of the matching process.

A subset of employed workers Ht engage in on-the-job search and match with poaching vacancies Vϵ,t.

The number of such matches is described by a second matching function:

Mϵ,t = Bϵ,tH
β
t V

1−β
ϵ,t ,

where Mϵ,t is the number of workers who quit their positions to join a new employer, β ∈ [0, 1] is the

matching elasticity, and Bϵ,t is the efficiency of the matching process for already-employed workers.

We use a simplified version of a targeted search model (see Cheremukhin, Restrepo-Echavarria, and

Tutino (2020)) as an inspiration to generalize our matching function specifications to the case where both

types of workers sometimes confuse the two vacancy types and therefore apply to the wrong type of vacancy,

so both types of vacancies run the risk of being filled by workers for which they were not originally designed.

This confusion creates additional cross-matches, and their numbers should have the following forms: M+
u,t =

AuU
αV 1−α

ϵ,t , and M+
ϵ,t = AϵH

β
t V

1−β
u,t . These matches would be counted as unemployment-to-employment

and employment-to-employment transitions respectively.

In addition, to accommodate the effect of substantial flows of workers between employment and out-

of-the-labor-force states, we add a term capturing the potential matches of workers out of the labor force

with total vacancies to produce additional flows into employment: M++
u,t = BLN

ψ
t V

1−ψ
t To make the overall

estimated expressions somewhat more flexible, we postulate the following general functional forms:

Mu,t = Bu,tU
α
t V

1−α
u,t

[
1 +Au

(
Vϵ,t
Vu,t

)γ]
+BLN

ψ
t V

1−ψ
t , (3)

Mϵ,t = Bϵ,tH
β
t V

1−β
ϵ,t

[
1 +Aϵ

(
Vu,t
Vϵ,t

)γ]
, (4)
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where the mixing coefficients Au and Aϵ are the fractions of unemployed workers that are able to get a job

with a firm that intended to poach and of employed workers that take up jobs intended for the unemployed.

The elasticity γ adds flexibility by allowing the cross terms to reflect variations in either of the vacancy

types. The parameter ψ captures the matching elasticity with respect to the number of civillians out of the

labor force Nt and total vacancies Vt, and parameter BL captures the matching efficiency.

The stock of employment increases when unemployed (or out of the labor force) workers find jobs, but

declines when employed workers are laid off:

Et+1 = Et (1− st) +Mu,t, (5)

where st is the layoff/separation rate. Note that matches created by employed workers and vacancies do not

enter this equation. This is because when a person leaves a job and moves into a different job, the number

of employed workers does not change.

We also need to make assumptions about the search effort of employed workers, Ht. In a study of search

effort of workers searching on the job Faberman et al (2022) find that on average 78 percent of employed

workers do not search at all, while the remaining 22 percent search even more effectively than the unemployed.

While this study does not shed light on how this share varies over the business cycle, it stands to reason

that it should vary with employment. As the baseline, we assume that there is the slow-moving bulk of

employed workers, on average accounting for 78 percent of employment, that do not search. A simple proxy

for this fraction would be a smoothed out trend of employment multiplied by 0.78. To compute a smoothed

trend we HP-filter the employment series with parameter 106, and denote it E∗
t . We assume that the rest of

employed search at full strength, as much as the unemployed:

Ht = Et − ξtE
∗
t , (6)

where ξt is the share of employed that do not search. We calibrate it to be 0.78 on average but let it vary

over time and estimate it as an unknown shock.

To close the model, we need to add equations determining how many vacancies of each type are posted.

The search and matching literature usually does this by assuming a free entry of vacancies, whereby vacancies

are added until their expected benefit equals their cost. As a result, the vacancy filling rate times the profit-

cost ratio for each vacancy type equals one:

Mu,t

Vu,t
yt = 1, (7)

Mϵ,t

Vϵ,t
zt = 1, (8)

where yt and zt denote the profit-cost ratios for vacancies designed for the unemployed and poaching vacancies

respectively.
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We further simplify the model and notation by detrending by the labor force, for each variable X defining

a lower case detrended analog xt = Xt/Lt. This simplifies the model to the following 8-equation system:

(1) mu
t = But u

α
t v

1−α
u,t

(
1 +Au

(
vε,t
vu,t

)γ)
+BLn

ψ
t v

1−ψ
t

(2) mε
t = Bεt h

β
t v

1−β
ε,t

(
1 +Aε

(
vu,t
vε,t

)γ)
(3) vu,t + vε,t = vt

(4) ht = et − ξte
∗
t

(5) et + ut = 1

(6) et+1δl,t = et (1− st) +mu
t

(7) vu,t = mu
t yt

(8) vε,t = mε
tzt

where δl,t is the growth rate of the labor force. This system now contains 8 endogenous variables et, ut, vu,t,

vϵ,t,m
u
t ,m

ϵ
t, ht, vt and 9 exogenous variables yt, zt, st, ξt, δl,t, e∗t , nt, But , Bϵt . We allow the matching efficiencies

But Bϵt to follow linear trends, but not independently fluctuate at business cycle frequencies, as then they

would be impossible to distinguish from fluctuations in yt and zt. Therefore, all the short-term fluctuations

in matching efficiencies will show up in estimated series for yt and zt.

We observe 9 variables with white-noise error: the unemployment rate ut, the vacancy rate vt, the

matching rate of the unemployed mu
t , the matching rate of the employed mϵ

t, the separation rate st, the

employment-to-employment transition rate eet, the growth rate of the labor force δl,t, the out of the labor

force rate nt, and the hp-filtered employment rate e∗t . The observed employment-to-employment rate could

correspond to two different specifications, either the ratio of hires from employment to employment eet =
mϵ

t

et
,

or the ratio of hires from employment to the search effort of the employed eet =
mϵ

t

ht
. We consider both

specifications in the estimation, labeling them with the letters A and B respectively.

We assume that the 7 exogenous variables follow piece-wise linear time trends and fluctuate around

them in an autoregressive way. We parameterize the trends in the exogenous variables and derive the

corresponding trends in the endogenous variables. From this derivation, as shown in Appendix A, we can

link the parameters of the trends of the exogenous variables and the observed variables. We use the observed

variables to estimate the parameters of the underlying trends in all the variables of the model, and detrend

the observed variables correspondingly. We then log-linearize the model around the estimated trends, as

shown in Appendix A.

3 Data

Here we describe the data we use for our estimation. The first primary source of data is the Bureau of Labor

Statistics, from which we use the Household Survey (HS), the Current Population Survey (CPS), and the

Job Openings and Labor Turnover Survey (JOLTS). We use the HS as a source of data on the Civillian
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Labor Force (1), composed of Employed (2) workers and Unemployed (3) workers, and the Civillians Not in

the Labor Force (4), all four series for at least 16 year-olds, for the period from January 1978 to December

2024.

The CPS provides a Research dataset measuring flows of workers between the three states - Employ-

ment, Unemployment and Not-in-the-Labor-Force. We use headcounts measuring flows from Employment

to Unemployment (EU flow, 5) and from Unemployment to Employment (UE flow, 6), for the period from

February 1990 to December 2024.

The CPS dataset has been used by Fujita, Moscarini and Postel-Vinay (FMP, 2024), our second data

source, to compute the rate at which workers transit between jobs (EE rate, 7), for the period from October

1994 to December 2024. We use their rate and multiply it by the number of Employed workers (2) to obtain

a measure of employed workers that found a new job each month (EE flow).

The JOLTS provides monthly headcounts for total Hires (8), total Separations, containing Quits (9) and

Layoffs (10), as well as total Job Openings (11), for the period from December 2000 to December 2024.

The CPS dataset has also been used by Ellieroth and Michaud (2024), our third data source, to measure

transition rates from Employment to Unemployment (EU rate, 12) and Employment to Not-in-the-Labor-

Force (EN, 13), and break each of these flows into voluntary separations (Quits,14, EUQ,15, ENQ,16) and

involuntary separations (Layoffs, 17, EUL, 18, ENL, 19), for the period from January 1978 to December

2024. This dataset is notable because it infers from the CPS a series for Quits (14) which for the overlapping

period is very similar to JOLTS data (9), and a series for Layoffs (17) which also for the overlapping period

is very similar to JOLTS data (10). At the same time, the total EN flow (13) thus measured from the CPS

is nearly indistinguishable from the EE rate (7), and both the EN and EU flows (12,13) are consistent with

those reported by the CPS directly (5). The rates measured by Ellieroth and Michaud (EM, 2024) therefore

bring together in a consistent way the CPS and JOLTS datasets, and extend both back in time to January

1978.

In addition, we use the methodology developed by Barnichon (2010) that extends the JOLTS measure

of total job openings (11) back in time to 1951 using the Conference Board help-wanted index of online and

newspaper advertising (20), our fourth data source.

To remove structural trends relating to the size of labor supply, we convert all the raw headcounts we

described earlier to rates relative to the labor force. This brings the measured series close to stationarity and

in accordance with the assumptions of our model. As the measure of the unemployment rate ut we take the

number of unemployed (3) divided by the labor force (1). As the measure of the vacancy rate vt we take the

number of vacancies (11,20) divided by the labor force (1). As the measure of the exogenous variable δl,t we

take the growth rate of the labor force (1). As the measure of not in the labor force nt we take the number

of not in the labor force (4) divided by the labor force (1). As the measure of HP-filtered employment e∗t we

take the number of employed (2) divided by the labor force (1) HP-detrended with parameter 106.

For the remaining measures of (EU,UE,EE flows) we are left with more than one option. For the hires

from unemployment flow mu
t we have two options: 1) UE flow from the CPS (6) for 1990-2024, 2) Hires (8)
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Figure 2: Data used in the Estimation.

Source: BLS, Fujita, Moscarini, Postel-Vinay (2024), Ellieroth, Michaud (2024), Barnichon (2010), Conference Board.

minus Quits (9) from JOLTS for 2000-2024, — each in turn divided by the labor force (1) and in natural

logs. For the hires from employment flow mϵ
t we also have two options: 1) EE flow computed from the CPS

as EE rate by FMP (7) multiplied by Employment (2) for 1995-2024, 2) Quits (9) from JOLTS extended

using the series by EM (14) for 1978-2024, — each in turn divided by the labor force (1) and in natural logs.

For the layoff/separation rate st we have two options as well: 1) EU flow computed from the CPS extended

using the series by EM (12) for 1978-2024, 2) Layoffs (10) from JOLTS extended using the series by EM

(17) for 1978-2024, — each in turn divided by Employment (2) and in natural logs. Finally, the EE rate

eet that we use in the estimation is computed by dividing the EE flow described earlier by Employment (2),

and taking natural logs. We consistently use the the same option for hires from employment flow and the

EE rate. Each of the series and their options are shown in Figure 2 below.

We estimate the model under six configurations, combining three sets of hiring/separation data with two

methods of interpreting employment-to-employment (EE) rates: A-variant uses hires divided by employment;

B-variant uses hires divided by estimated on-the-job search effort. The three sets of hiring separation data

include: 1) all series are sourced from CPS; 2) hires rates from the CPS, but Separation/Layoff rates from

JOLTS; 3) all four series from JOLTS. We label the six estimation configurations CPS-A/B, Hybrid-A/B,

and JOLTS-A/B, respectively. This multi-pronged estimation strategy ensures our findings are not artifacts

of a particular data source or flow measurement method. It highlights the model’s ability to fit labor market

dynamics robustly across all commonly used constructions.
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4 Results

Aggregate estimation Using our detrending methodology, we find that the separation rate and the

unemployment rate have long-term downward trends. This is consistent with the literature documenting a

secular decline in labor market dynamism in the US, e.g., Molloy et al. (2016). The downward trend in

separations accounts for the decline in the trend of the unemployment rate over the past 25 years, consistent

with a downward trend in most existing measures of the natural rate of unemployment (see e.g. Crump et

al (2019).) We find that the estimated profit-cost ratio for poaching vacancies, zt, exhibits a break in trend

around 2011, whereby a positive slope emerges after this date. This trend in profitability zt generates the

upward trends in vacancies, poaching vacancies and hires from employment.

We choose a Bayesian approach because some parameters may not be fully identified, and the likelihood

surface can exhibit flat regions or multiple local maxima. In such cases, traditional maximum likelihood esti-

mation may struggle to find a unique optimum. By combining the likelihood with a relatively uninformative

prior, the Bayesian method introduces additional curvature into the parameter space, improving convergence

and aiding exploration of the posterior distribution. It also provides a natural diagnostic: when a parameter

is weakly identified, its posterior remains close to the prior, revealing the limits of what the data can pin

down.

We evaluate the posterior distribution using a Random Walk Metropolis (RWM) algorithm, as described

in An and Schorfheide (2007). For each model variant, we run multiple chains initialized at the posterior

mode, generating a total of 100,000 draws. We monitor convergence by checking that acceptance rates stay

between 0.2 and 0.5 and that posterior means are stable across chains.

In this section, we report the parameter values that we recover and the estimated split of total vacancies

into non-poaching and poaching vacancies. Our estimated parameters using CPS-A and JOLTS-A data

specifications are shown in Tables 1 and 2. Note that the estimates from both specifications are very similar

for all of the key parameters of interest. This is true more broadly for the 6 specifications we consider, as

Table 1: Parameter estimates of the model in the CPS-A specification

Parameter Prior Posterior

mean st.dev. mode mean st. dev. conf. int. [5-95]

α 0.5 0.2 0.157 0.166 0.014 [0.137, 0.194]

β 0.8 0.1 0.963 0.961 0.011 [0.939, 0.985]

γ 0.5 0.2 0.055 0.0692 0.030 [0.007, 0.128]

cu 0.2 0.1 0.041 0.038 0.008 [0.022, 0.055]

cϵ 0.2 0.1 0.080 0.096 0.033 [0.026, 0.160]

bL 0.2 0.1 0.098 0.089 0.029 [0.030, 0.147]

Notes: The priors for α, β, γ, cu, cϵ were drawn from a beta distribution with support on the interval [0, 1], prior for bL was

drawn from a gamma distribution with positive support.
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Table 2: Parameter estimates of the model in the JOLTS-A specification

Parameter Prior Posterior

mean st.dev. mode mean st. dev. conf. int. [5-95]

α 0.5 0.2 0.108 0.117 0.017 [0.090, 0.145]

β 0.8 0.1 0.929 0.921 0.015 [0.892, 0.947]

γ 0.5 0.2 0.017 0.025 0.013 [0.003, 0.046]

cu 0.2 0.1 0.144 0.140 0.013 [0.117, 0.164]

cϵ 0.2 0.1 0.036 0.055 0.048 [0.009, 0.100]

bL 0.2 0.1 0.033 0.053 0.015 [0.012, 0.096]

Notes: The priors for α, β, γ, cu, cϵ, were drawn from a beta distribution with support on the interval [0, 1], prior for bL was

drawn from a gamma distribution with positive support.

Figure 3: Prior and Posterior Estimates of Parameters for 6 estimation setups.

shown graphically in Figure 3. We estimate the elasticities of the matching functions, α in the [0.1-0.3]

range and β in the [0.8-1] range. We also find that the elasticity of the cross-matches γ is close to zero.

The parameters cu and cϵ are the log-linear analogs of parameters Au and Aϵ in the full model, measuring

the fractions of hires from employment and unemployment pools respectively that are formed using the

wrong types of vacancies. Across all 6 specifications, we find that the fraction of hires from unemployment

using poaching vacancies typically does not exceed 20 percent, and the fraction of hires from employment

using non-poaching vacancies typically does not exceed 10 percent, with average modal values of cu = 10%

and cϵ = 3% respectively. We find that the estimated share of net flows from out of the labor force into

employment also typically does not exceed 10% with the average modal value of bL = 3%. The rest of the

parameters reflect the properties of the estimated underlying exogenous shocks and we report them in full

in Appendix C.

The estimated model under the modal estimated parameters also recovers the exogenous shocks yt and
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Figure 4: Estimated Shocks and Vacancy Split from 6 estimation setups.

zt representing the profit-cost ratios for the two types of vacancies, and the split of job openings themselves

into the two types of vacancies. We report the split of vacancies and the underlying shocks, calculated for

the period 1978 to 2024 at a monthly frequency, in Figure 4. Not to overload the Figure, yet to reflect the

uncertainties coming both from differences in measured data and in estimated parameters, we report the

average of shocks and vacancy split series from all six specifications, as well as the 90-percent confidence

intervals around them.

There are two important observations one can make from Figure 4. First, the fraction of poaching

vacancies has increased significantly since at least 2015, compared with the preceding period. This trend

increase is closely associated both in timing and in magnitude with the trend increase in the profit-cost

ratio for poaching vacancies, suggesting it as the causal factor. Second, while the business cycle behavior

of the two types of vacancies was similar in the period prior to 2015 (both dropped during recessions

and recovered during booms) it was dramatically different in the most recent recession episode. Although

poaching vacancies fell in 2020, but quickly recovered soon after, the non-poaching vacancies increased in

the recession period.

Sectoral estimation The data from JOLTS for 2000-2024 allows the application of exactly the same

estimation procedure for 9 sub-sectors of the economy: Manufacturing, Construction, Transportation and

Utilities, Wholesale Trade, Retail Trade, Business Services, Education and Health, Leisure, and Government.

We show the full results of the estimation in Appendix C. Here we only report the important estimates of

parameters and vacancy decomposition, in Table 3 and Figure 5. We see that for all the sub-sectors of

the economy the results are broadly consistent with the aggregate results: α takes low values in the [0-0.1]
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Table 3: Posterior (mode) estimates of parameters for sectors of the economy in the JOLTS-A specification

α β γ cu cϵ bL

Construction 0.066 0.990 0.014 0.109 0.057 0.047

Manufacturing 0.029 0.985 0.006 0.164 0.136 0.120

Transportation, Utilities 0.045 0.978 0.011 0.098 0.089 0.053

Wholesale Trade 0.081 0.967 0.016 0.090 0.060 0.040

Retail Trade 0.082 0.964 0.013 0.071 0.073 0.060

Business Services 0.037 0.979 0.013 0.141 0.081 0.052

Education, Health 0.019 0.944 0.007 0.124 0.144 0.079

Leisure 0.038 0.948 0.021 0.073 0.109 0.073

Government 0.003 0.975 0.010 0.106 0.134 0.035

Notes: The priors for α, β, γ, cu, cϵ were drawn from a beta distribution with support on the interval [0, 1], prior for bL was

drawn from a gamma distribution with positive support.

interval, β takes high values in the [0.9-1] interval, γ is close to zero, cu, cϵ and bL are all low, in the [0-0.15]

interval, and the apparent upward trend in sectoral vacancies in each case appears driven by an increase in

the poaching component driven by the profit-cost ratio zt.

Business cycle variations in profit-cost ratios yt and zt capture not only changes in the relative profitability

of vacancy creation, but also potential fluctuations in matching efficiency in each sub-market. Since these

two factors cannot be separately identified from the data, we impose a smooth-trend restriction on matching

efficiency. We assume that efficiency follows a log-linear trend over time. Under this assumption, short-

run variation in yt and zt reflects changes in vacancy profitability and subsumes fluctuations in matching

efficiency.

Identification Appendix B describes in detail how shocks are identified in our model. We log-linearize the

model and invert the mapping between observed and unobserved variables in closed form. The identification

logic can be understood in terms of how the model attributes the observed trends and fluctuations in vacancies

and hiring flows.

First, the model translates the downward trends in the separation rate and unemployment rate to a

corresponding downward trend in non-poaching vacancies. The fluctuations in non-poaching vacancies are

determined by a linear combination of hires from unemployment, the unemployment rate, and total vacancies,

and depend only on parameters α, cu, and γ.

Since total vacancies display a strong upward trend and higher cyclical volatility than hires or unem-

ployment, the model improves fit (i.e., increases marginal data density) by minimizing the influence of total

vacancies in this equation. This leads to estimates of cu and γ close to zero. Meanwhile, the relative volatility

of hires from unemployment and the unemployment rate drives the estimated value of α.
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Figure 5: Estimated Shocks and Vacancy Split, across 9 sectors.

The residual difference between observed total vacancies and estimated non-poaching vacancies is then

attributed to poaching vacancies, which must absorb the remaining trend and cyclical variation. The pa-

rameter β is identified from the relationship between hires from employment and these inferred poaching

vacancies. Given that the poaching vacancy series is highly volatile, the model again favors a low sensitivity,

pushing β close to 1, so that poaching vacancies explain most of the observed variation while contributing

minimally to hires.

This identification logic yields a consistent interpretation: the observed post-2010 rise in vacancies is

almost entirely attributable to poaching, while non-poaching vacancies remain closely tied to unemployment

dynamics. This helps explain the puzzling shifts in the Beveridge curve without requiring unusual movements

in unemployment or hires. Importantly, the rise in total vacancies after 2010 is well-documented (e.g.,

Mongey and Horwich, 2024) and is corroborated by alternative vacancy indicators, such as the Conference

Board-Lightcast Help Wanted Online Index and the Indeed Hiring Lab postings tracker.

Our model offers a new explanation and quantitative interpretation of this structural change: the trend

increase in poaching vacancies reflects a deeper shift in the composition of labor demand.

5 Dual Beveridge Curve

The estimate of vacancies for the unemployed then takes center stage for understanding the behavior of

the unemployment rate. To better understand our results, we need to look at them through the lens of an

adjusted Beveridge curve. Recall that only the non-poaching vacancies match with unemployed workers and

lead to increases in employment. Thus, the proper Beveridge curve relationship should consider only non-
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Figure 6: Classical and Adjusted Beveridge Curves

poaching vacancies and disregard poaching vacancies. The adjusted Beveridge curve for the whole economy

is shown in the right panel of Figure 6 compared with the unadjusted (or classical) Beveridge curve in the

left panel.

Figures 4 and 6 are illustrative of what happened in labor markets since the onset of the Covid pandemic.

The first few months of the pandemic saw a decline in demand due to widespread social distancing, which

increased unemployment and reduced poaching. In the next few months, mask and distancing mandates led

to a separation shock where many more people were laid off than would be consistent with lower demand; so

non-poaching vacancies increased, and a lot of people were hired back from unemployment very quickly. After

the spike in hires from unemployment ended, stimulative fiscal and monetary policy increased purchasing

power and created strong excess demand for goods. The excess demand prompted firms to expand, but this

excess demand for workers could not be met by hiring from the unemployment pool. Together with supply

chain bottlenecks, the excess demand for goods led to a surge in inflation; and excess demand for workers

led to an increase in poaching, which then drove up nominal wage growth.

This interpretation provides us with two lessons. First, the (adjusted) Beveridge curve relationship

between unemployed workers and non-poaching vacancies has not changed, at either the aggregate or sectoral

level. In other words, the current puzzling behavior of the Beveridge curve disappears once we replace total

vacancies with non-poaching vacancies. Second, abnormalities in the classical Beveridge curve are due to

a disproportional expansion of poaching vacancies after 2010. Our estimation suggests that the underlying

cause for this shift is the dramatic increase in the profit-cost ratio for poaching vacancies.
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To better understand the shift, we can think of the steady-state version of our model and consider how

it would be affected by a trend increase in the profit-cost ratio and the increase in the steady-state share of

poaching vacancies. Equations of the model can be further simplified by substituting the matching functions

and the search effort of the employed to get:2

(1− u) s = Buu
(vu
u

)1−α
,(vu

u

)α
= Buy,(

vϵ
0.27− u

)β
= Bϵz.

where we omitted the mixing matching terms for simplicity. Although these three equations have three

endogenous variables u, vu, vϵ, the first two equations could be solved separately with respect to u and vu

— whose relationship determines the adjusted Beveridge curve. Poaching vacancies are then determined by

the third equation, driven by fluctuations in their profitability z and the unemployment rate. The solution

to the model then looks as follows:

u =
1

1 + Bu

s (Buy)
1
α−1

,

vu = u (Buy)
1
α ,

vϵ = (0.27− u) (Bϵz)
1
β .

Log-linearizing the model with respect to u and vu, we find that the slope of the adjusted Beveridge curve is

− α+u∗(1−α)
(1−u∗)(1−α) . We further denote the “steady-state” share of poaching vacancies by ϕ∗ =

v∗u
v∗u+v

∗
ϵ
. To find the

slope of the classical Beveridge curve, we need to understand the relationship between movements in y and

z over the business cycle. In standard search models, movements in profitability of a match y reflect changes

in productivity or demand driving the business cycle. It is natural to expect the profitability of poaching

vacancies to be driven by similar factors. Therefore, we would expect y and z to have a common factor

reflecting business-cycle fluctuations. We denote the elasticity of the co-movement between profitabilities by

dy, reflecting the ratio of their log standard deviations: ln
(
y
y∗

)
∝ dy ln

(
z
z∗

)
. In fact, in our estimated model

we estimated the factor xt which is a common driver of both yt and zt and from the filtered estimates of the

three shocks we can deduce a value for dy of around 0.2. Then we can show that the slope of the classical

Beveridge curve is:

−ϕ∗ α+ u∗ (1− α)

(1− u∗) (1− α)
− (1− ϕ∗)

(
u∗

0.27− u∗
+

1

dyβ

(
1 +

α+ u∗ (1− α)

(1− u∗) (1− α)

))
.

The first term reflects movement in non-poaching vacancies in the adjusted Beveridge curve. The second

term reflects the movements in search effort of the employed and the movements in the profitability of

poaching vacancies over the business cycle.

To put some numbers to these slopes, we use the estimated parameters α = 0.16, β = 0.90, the steady-

state share of non-poaching vacancies ϕ∗ = 0.45,3 and the steady-state level of unemployment u∗ = 0.04. For
2Note that based on our model approximation search effort of the employed can be expressed as a function of the number

of unemployed Ht = Et − 0.78E∗
t = Lt − Ut − 0.78 (Lt − U∗

t ) = 0.22Lt + 0.78U∗
t − Ut ≈ 0.27Lt − Ut.

3To take a conservative approach, we use the estimated vacancy split that we observe prior to 2010.
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this calibration, the slope of the adjusted Beveridge curve is -0.33, consistent with the slope of the adjusted

Beveridge curve shown in Figure 6. Assuming the estimated parameter dy = 0.15, we also get the slope of

the classical Beveridge curve right at -1, consistent with Figure 6 and the commonly accepted value of the

slope in the literature. If the steady-state level of poaching vacancies were to increase to 0.85, as we have

seen recently, then the Beveridge curve could have steepened to a slope of -1.4.

Figure 6 compares the joint behavior of unemployment and vacancies with the predictions of our calibrated

theoretical model for the dual Beveridge curve. Instead of parameter values for Bu, Bϵ, s, z, and y, we input

their estimated linear trend values for 2007 and 2019, two pre-recession peaks commonly used as reference

points, and 2023, which is close to the end of observations at hand. The adjusted Beveridge curve in the right

panel shifted down only mildly due to the reduced labor market dynamism, as captured by the decline in the

trend separation rate. The classical Beveridge curve in the left panel both shifted outward and steepened its

slope, due to the increase in steady-state profit-cost ratio z and the consequent expansion in the steady-state

level of poaching vacancies. It expanded and steepened further for the estimated trend values of 2023, but

we think it premature to project an indefinitely growing trend, and thus the estimate for 2019 represents a

conservative estimate.

6 Model Fit and Comparison with Standard Model

Since we do not have direct evidence on the split of vacancies into poaching and non-poaching types, and it

is not a given that such a clear split exists, it would be helpful to understand whether our new dual-vacancy

model provides a better description of the data than existing models. In order to answer this question,

we adopt the traditional model with a single matching function to fit our observables and estimate its

parameters.

According to the standard model, a single constant-returns-to-scale matching function combines the total

number of job seekers Ut+Ht with the total number of vacancies Vt to produce the total number of matches

Mu
t +M ϵ

t . In order to give the model the chance of matching the data, we add extra flexibility to this overly

restrictive model. We allow the proportion of total matches going to the unemployed to differ from their

share of the search effort and estimate an additional parameter responsible for this split. Thus, our version

of the traditional model consists of two equations:

Mu
t = BuUt

(
Vt

Ut +Ht

)1−α

, (9)

M ϵ
t = BϵHt

(
Vt

Ut +Ht

)1−α

. (10)

We replace the matching equations of our model with these alternative equations and estimate the

traditional model using the same methods as the dual-vacancy model. This allows us to compare fit because

both models approximate the same set of data, even though the two models differ in the number of estimated

parameters and shocks. In particular, the traditional model has only one elasticity of the matching function,
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Figure 7: Estimated parameters of restricted model.

Table 4: Parameter estimates of the model with a single matching function

Parameter Prior Posterior

mean st.dev. mode mean st. dev. conf. int. [5-95]

CPS-A

α 0.5 0.2 0.32 0.32 0.015 [0.31, 0.35]

bL 0.2 0.1 0.982 0.976 0.01 [0.956, 0.998]

ψ 0.5 0.2 0.59 0.59 0.03 [0.56, 0.63]

JOLTS-A

α 0.5 0.2 0.141 0.145 0.005 [0.134, 0.155]

bL 0.2 0.1 0.992 0.986 0.006 [0.974, 0.998]

ψ 0.5 0.2 0.46 0.46 0.01 [0.44, 0.49]

Notes: The priors for α, ψ were drawn from a beta distribution with support on the interval [0, 1], prior for bL was drawn

from a gamma distribution with positive support.

Table 5: Comparison of model fit

Sector Marginal Data Density Bayes factor

DVM SMF

CPS-A 9923 8972 exp(951)

CPS-B 9344 7940 exp(1404)

Hybrid-A 8985 7618 exp(1367)

Hybrid-B 9573 6086 exp(3486)

JOLTS-A 9427 7944 exp(1483)

JOLTS-B 9964 6406 exp(3559)

Notes: DVM stands for dual vacancy model, and SMF stands for single matching function model. The marginal data density

was computed using Geweke’s (1999) modified harmonic mean method.
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α, and combines vacancies into a single series; whereas, the dual-vacancy model has two elasticities of the

matching function, α and β, and recovers a hidden variable, the split of the vacancies.

The parameter estimates for the traditional model are presented in Table 4 and Figure 7. The estimates

of the matching elasticity tend to be driven by the matching process for the unemployed and therefore give

values in a range similar to the dual-vacancy model (see Tables 1 and 2). However, the inability of the model

with a single matching function to explain the matching process for the employed leads to much poorer fit.

In Table 5 we present measures of model fit. The dual-vacancy model fits the data uniformly better

based on marginal data density: in all six cases Bayes factors strongly favor the dual-vacancy model. This

is because the business cycle responsiveness of job-to-job flows and hires from unemployment to the vacancy

rate differs substantially, making it hard to match both with a single matching function elasticity. The

dual-vacancy model does a much better job at fitting both rates because it has two elasticity parameters

rather than one, and also because it has the ability to split vacancies into two subsets - one for each matching

rate. The dual-vacancy model consistently outperforms the standard model in all configurations due to its

ability to separately match poaching and non-poaching flows.

7 Broader Implications and Future Directions

Our results are important for policy considerations, in particular, for monetary policy’s effect on unemploy-

ment. As argued by Figura and Waller (2022), a steeper Beveridge curve could imply that tighter monetary

policy would result in a larger decline in vacancies corresponding to only a mild increase in the unemployment

rate.

In this paper, we attribute the Beveridge curve puzzle to the disproportional expansion of poaching

vacancies. Our estimates combined with a theoretical model indicate that the slope of the Beveridge curve

has indeed steepened from -1 to at least -1.25 and possibly -1.4. This coefficient implies that a decline in

the vacancy rate from 7% to 5% should correspond to an increase in the unemployment rate from 3.5 to at

most 4.6 percent, and possibly 4.4 percent, as opposed to 4.9 percent previously. Another consequence of

the expansion of poaching vacancies is the outward movement of the Beveridge curve, which suggests that

a coexistence of a 6% vacancy rate (rather than 4% vacancy rate) with a 4% unemployment rate may be

the new normal. Consequently, a monetary tightening in the 2020s is likely to lead to a larger decline in job

openings corresponding to a milder increase in the unemployment rate, consistent with a notion of a “soft

landing.”

The future is uncertain, however. The interpretation of the most recent behavior of the Beveridge curve

depends on the reason for the expansion in poaching vacancies and whether it is likely to continue. Among

the possible explanations are both factors that reduced the costs associated with filling vacancies and factors

that increased their benefits to firms. The first set of factors includes the effects of the expansion of online

job search tools and increased use of AI (Acemoglu et al, 2022), the expansion of available temporary and

remote work (Bloom et al, 2023), and the expansion of the online gig economy (Stanton and Thomas, 2021).
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Figure 8: Detrended vacancies and quits.

The second set of factors could include rising market concentration and markups (Autor et al, 2020, De

Loecker et al, 2020) and the associated expansion of monopsony power of firms (Azar et al, 2019, Berger

et al, 2022). If some of these factors are at play, the expansion of poaching vacancies could continue for as

long as these trends continue. Therefore, more changes in monetary policy could be absorbed by poaching

vacancies, with little impact on non-poaching vacancies and only a small increase in unemployment.

Alternatively, the expansion of poaching vacancies could be due to a reduction in mis-measurement:

according to Davis et al. (2013), as of 2011, 42% of hires occurred at establishments that did not have

any job openings. If those firms have gradually improved their reporting of vacancies that had not been

reported previously, then the aggregate Beveridge curve has shifted outward, but there are limits to such an

expansion. In this case, the Beveridge curve will stabilize at a new level and slope.

The main lesson from our exercise, however, is that instead of looking at the classical Beveridge curve
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and interpreting its increasingly chaotic movements, we should shift our attention to the adjusted Beveridge

curve, which is unlikely to change much, and will therefore remain a good indicator of the state of the labor

market going forward.

In addition to clarifying how to interpret the Beveridge curve, our model also offers a practical tool for

disentangling structural and cyclical components in key labor market indicators. Because the estimated

trends in poaching and non-poaching profitability reflect slow-moving changes in firm hiring strategies, we

can use them to construct detrended versions of observed series such as vacancies and quits. Figure 8 shows

the raw and adjusted vacancy and quits series after removing the structural trend components implied by

our estimated model. This adjustment reveals that much of the increase in aggregate vacancies in recent

years reflects long-term shifts in vacancy composition, rather than heightened cyclical labor demand. These

adjusted series may serve as more reliable indicators for short-run policy analysis going forward.4

Another important takeaway point is that economists and statistical agencies need to put resources into

more and better measurement of the vacancy split, between vacancies targeting unemployed workers and

vacancies designed for hiring workers that already have a job. Surveys of firms conducted by statistical

agencies could ask the firms a question that would shed light on this issue and enable direct measurement of

the vacancy split. Such measurement would both enable the development of better theoretical models and

a better real-time assessment of the state of the labor market.

Declaration of Generative AI and AI-assisted technologies in the writing process During the

preparation of this work the authors used OpenAI in order to improve readability and language. After using

this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the

content of the publication.
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Appendix A: Full Model

Main equations for endogenous variables:

(1) mu
t = Bu,trt uαt v

1−α
u,t

(
1 +Au

(
vε,t
vu,t

)γ)
+BLn

ψ
t v

1−ψ
t matching of unemployed

(2) mε
t = Bε,trt hβt v

1−β
ε,t

(
1 +Aε

(
vu,t

vε,t

)γ)
matching of employed

(3) vu,t + vε,t = vt vacancy split

(4) ht = et − ξte
∗
t search effort of employed

(5) et + ut = 1 labor force identity

(6) et+1δl,t = et (1− st) +mu
t evolution of employment

(7) vu,t = mu
t yt free entry of non-poaching vacancies

(8) vε,t = mε
tzt free entry of poaching vacancies

Exogenous variables of the model:

(9) st = strt expφ1t separation shock

(10) yt = ytrt exp (dyxt) expφ2t low skill productivity shock

(11) zt = ztrt expxt expφ3t high skill productivity shock

(12) ξt = ξ0 expφ4t share of ss employed that do not search

(13) δl,t = δl0 expφ5t growth rate of labor force

(14) nt = n0 expφ6t evolution of not in the labor force

(15) e∗t = e∗0 expφ7t evolution of hp-filtered employment

Log-linearized version of the model (relative to trend, to be described below):

(1) m̂u
t = αût + (1− α) v̂u,t + cuγ (v̂ε,t − v̂u,t) + bL (ψn̂t + (1− ψ) v̂t)

(2) m̂ε
t = βĥt + (1− β) v̂ε,t + cεγ (v̂u,t − v̂ε,t)

(3) ϕv̂u,t + (1− ϕ) v̂ε,t = v̂t vacancy split ϕ = vu
v steady state

(4) ĥt =
1

1−ξ0 êt −
ξ0

1−ξ0

(
ξ̂t + ê∗t

)
search effort of employed

(5) (1− u0) êt + u0ût = 0 labor force identity

(6) êt+1 + δ̂l,t = (1− s0) êt − s0ŝt + s0m̂
u
t evolution of employment

(7) v̂u,t = m̂u
t + ŷt free entry of non-poaching vacancies

(8) v̂ε,t = m̂ε
t + ẑt free entry of poaching vacancies

(9) ŝt = φ1t separation shock

(10) ŷt = dyxt + φ2t low skill productivity shock

(11) ẑt = xt + φ3t high skill productivity shock

(12) ξ̂t = φ4t share of ss employed that do not search

27



(13) δ̂l,t = φ5t growth rate of labor force

(14) n̂t = φ6t evolution of not in the labor force

(15) ê∗t = φ7t evolution of hp-filtered employment

Evolution of shocks:

xt = ρx1xt−1 + ρx2xt−2 + σxεxt common component of productivity in both sectors

φit = ρφi φit−1 + σφi ε
φ
it unknown shocks i = [1, 7]

Measurement equations:

(M1) ũt = ût + ω1t unemployment rate

(M2) ṽt = v̂t + ω2t vacancy rate

(M3) m̃u
t = m̂u

t + ω3t hires-quits/LF, UE flow/LF

(M4) m̃ε
t = m̂ε

t + ω4t quits/LF, EE flow/LF

(M5) s̃t = ŝt + ω5t Layoffs/Employment, EU flow/Employment

(M6) ẽet = m̂ε
t − êt + ω6t E-E rate, version 0

(M6′) ẽet = m̂ε
t − ĥt + ω6t E-E rate, version 1

(M7) δ̃l,t = δ̂l,t + ω7t
LFt

LFt+1
growth rate of labor force

(M8) ñt = n̂t + ω8t
Nt

LFt
out of the labor force rate

(M9) ẽ∗t = ê∗t + ω9t hp-filtered (1000000) employment rate

Measurement errors:

ωjt = σωj ε
ω
jt white noise measurement errors j = [1, 9]

Endogenous variables:

êt, ût, v̂u,t, v̂ε,t, v̂t, m̂
u
t , m̂

ε
t , ĥt, ŝt, ŷt, ẑt, ξ̂t, δ̂l,t, n̂t, ê

∗
t (15)

ũt, ṽt, m̃
u
t , m̃

ε
t , s̃t, ẽet, δ̃l,t, ñt, ẽ

∗
t (9)

Exogenous variables: xt, φit

41 equations, 41 variables, 17 shocks

Estimated parameters: α, β, γ, cu, cε, ψ, bL, ρx1 , ρx2 , σx, ρ
φ
i , σ

φ
i , σ

ω
j

Calibrated parameters: ϕ = 0.45, ξ0 = 0.78, u0 = 0.04, s0 = 0.013, σωi = 0.03 for i ∈ [1, 6],

σωi = 0.005 for i ∈ [7, 9]
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We allow for non-linear trends in the data series. More specifically, we assume that underlying shocks

are the source of trends, and derive the correspondence to the trends in the data. We then estimate

trends in the data from which we infer parameters of trends in the underlying shocks. We assume the

following trends in shock variables:

Bu,trt = Bu0 exp (−aut) Bε,trt = Bε0 exp (−aεt)

strt = s0 exp (−ast) ytrt = y0 exp (ayt) ztrt = z0 exp
(
az [t− τ ]+

)
If we substitute these trends into equations (1− 15), we can derive the following trend properties of

observed variables:

m̃tr
u,t = −ast s̃trt = −ast

Estimate −as as average of the regression coefficients of lnmu,t and ln st on a constant and time trend.

ũtrt = (1− u0)
(
−as + au

α + α−1
α ay

)
t

Estimate
(
−as + au

α + α−1
α ay

)
as 1

(1−u0)
of the regression coefficient lnut on a const and time trend.

ṽtrt = ϕ (−as + ay) t+ (1− ϕ)
(
− 1
βaεt+

1
βaz [t− τ ]+ − u0

(
−as + au

α + α−1
α ay

)
t
)

m̃tr
ε,t = − 1

βaεt+
1−β
β az [t− τ ]+ − u0

(
−as + au

α + α−1
α ay

)
t

We can use the parameters we already measured from other series to derive that
ṽtrt −ϕ(−as+ay)

(1−ϕ) − m̃tr
ε,t = az [t− τ ]+

If we assume a value for ay (we set it to 0), use the calibrated steady-state share of non-poaching

vacancies ϕ, then we can directly measure the trend in ln zt as the trend in the difference between the

rescaled log vacancies and log EE matches. We estimate a break in this trend in τ = December 2010

and therefore obtain estimates of aϵ and az. Given all the trend parameters as, au, ay, aϵ, az, τ , we can

subtract the trends from the measured series to obtain

ũt = lnut − (1− u0)
(
−as + au

α + α−1
α ay

)
t

ṽt = ln vt − ϕ (−as + ay) t− (1− ϕ)
(
− 1
βaεt+

1
βaz [t− τ ]+ − u0

(
−as + au

α + α−1
α ay

)
t
)

m̃u
t = lnmu

t − ast

m̃ε
t = lnmε

t +
1
βaεt−

1−β
β az [t− τ ]+ + u0

(
−as + au

α + α−1
α ay

)
t

s̃t = ln st − ast

ẽet = ln eet +
1
βaεt−

1−β
β az [t− τ ]+ + u0

(
−as + au

α + α−1
α ay

)
t+ u0

1−u0
ast

δ̃l,t = ln δl,t

ñt = lnnt

ẽ∗t = ln e∗t

All of the series are then de-meaned to be consistent with a steady-state value of zero.
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Appendix B: Identification

The log-linearized model (1− 15) can be separated into the endogenous block, containing equations

(1, 2, 3, 7, 8) and the exogenous block containing the rest of the equations. Because through equation

(6) employment êt is the state variable of the model determined one period in advance, and through

equation (5) the same is true for unemployment ût, and so the search effort ĥt is also exogenous through

equation (4), they can be all substituted in to obtain the following system of equations.

(1) (1− α− cuγ) v̂u,t + cuγv̂ε,t = m̂u,t − αût − bLψn̂t − bL (1− ψ) v̂t

(2) (1− β − cεγ) v̂ε,t + cεγv̂u,t = m̂ε,t + β u0

1−u0

1
1−ξ0 ût + β ξ0

1−ξ0 ξ̂t

(3) ϕv̂u,t + (1− ϕ) v̂ε,t = v̂t

(7) v̂u,t = m̂u,t + ŷt

(8) v̂ε,t = m̂ε,t + ẑt

This system can be written in matrix form as follows:

1− α− γcu γcu 0 0 0

γcε 1− β − γcε 0 0 −a2

ϕ 1− ϕ 0 0 0

1 0 −1 0 0

0 1 0 −1 0





vu

vε

y

z

ξ


=



−bLψ −α −bL(1− ψ) 1 0

0 a1 0 0 1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1





n

u

v

mu

mε


where we denoted a1 = β u0

1−u0

1
1−ξ0 a2 = β ξ0

1−ξ0 . This form can be used to understand the mapping

from observables to unobservables. Inverting the system (and assuming bL = 0, we obtain:

vu

vε

y

z

ξ


=



0 −α (1− ϕ)D −γcuD D (1− ϕ) 0

0 αϕD (1− α− γcu)D −ϕD 0

0 −α (1− ϕ)D −γcuD D (1− ϕ)− 1 0

0 αϕD (1− α− γcu)D −ϕD −1

0 αG−a1
a2

D F
a2
D − G

a2
D − 1

a2
D





n

u

v

mu

mε


where D = 1

(1−ϕ)(1−α)−γcu , F = ((1− β) (1− α)− γcu (1− β)− γcε (1− α)), G = ((1− β)ϕ− γcε)

From this expression we can deduce how the vacancy split (on the left) and parameters are identified

from properties of the data (on the right). The series for both types of vacancies, vu and vϵ, and the

shock y only depend on the number of matches made by unemployed, the number of unemployed and

the total number of vacancies. Since vacancies and unemployment are quite volatile compared with

the matching rate for the unemployed, the estimated model tends to give low estimates of parameters

cu and α. It is notable that none of the variables vu, vϵ, y, z depend on the behavior of out of the labor

force, or the parameters β, cϵ, ψ, bL. The high estimate of β is likely determined by the fact that it only

enters in the last line determining the search effort of the employed always in the form 1− β. Making
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β close to 1, and therefore this value close to zero, minimizes the variance of the unobserved search

effort.

The system of 5 equations can also be written to determine endogenous variables as a function of

exogenous variables:

(1− α− cuγ) cuγ bL (1− ψ) −1 0

cεγ (1− β − cεγ) 0 0 −1

ϕ 1− ϕ −1 0 0

1 0 0 −1 0

0 1 0 0 −1





vu

vε

v

mu

mε


=



−α 0 0 0 −bLψ
a1 0 0 a2 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0





u

y

z

ξ

n


This system can also be inverted in closed form (we again assume bL = 0 for simplicity):

vu

vε

v

mu

mε


= E·



α(β + γcε)− a1γcu β + γcε γcu γcu 0

αγcε − a1(α+ γcu) γcε α+ γcu α+ γcu 0

α(β + γcε)−
a1(α(1− ϕ) + γcu) βϕ+ γcε γcu + α(1− ϕ) γcu + α(1− ϕ) 0

αγcε − a1γcu

β(1− α− γcu)

+γcε(1− α) γcu γcu 0

αγcε − a1(α+ γcu) γcε

α(1− β − γcε)

+γcu(1− β) α+ γcu 0





u

y

z

−a2ξ

n


where we denoted E = 1

αβ+βγcu+αγcε
. When cε and cu approach 0, this further simplifies to:

vu

vε

v

mu

mε


=



1 1
α 0 0 0

−a1
β 0 1

β
1
β 0

1− a1(1−ϕ)
β

ϕ
α

1−ϕ
β

1−ϕ
β 0

0 1−α
α 0 0 0

−a1
β 0 1−β

β
1
β 0





u

y

z

−a2ξ
n


It is clear that vu and mu are driven only by u and y. The parameter cu controls the spillovers from z.

The remaining vacancies, as well as matches of the employed, are in addition affected by z and ξ, and

the strength of these effects are controlled by parameters β and cϵ. Parameter ϕ enters to determine

total vacancies as the sum of the two types.

Appendix C: Estimation Results

In Figure 9 and Tables 6 and 7 we report the estimates of parameters. We estimate α to be low (in the

0.1-0.2 range) and β to be high (in the 0.8-1 range). Figures 10-11 report the fit to the data and the

estimated shocks for two most important specifications, when data are taken from the CPS or from

JOLTS, and Figure 4 shows the estimates of the vacancy split and profit-cost ratios, with averages

and confidence bounds over all six estimated specifications. All specifications find that the share of

poaching vacancies increased after 2010 and that this was driven by an increase in the profit-cost
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ratio for poaching vacancies. Estimates of parameters with restrictions on the matching functions are

presented in Tables 8 and 9.

We estimate the same specification of the model for 12 two-digit sectors of the economy using the

JOLTS version of the data (as the only one available for the sectors). Estimates of parameters,

reported in Figure 12, show that estimates for the sectors are largely consistent with the aggregate

estimates. The behavior of the underlying shocks, illustrated for the manufacturing, business services,

trade, transportation and utilities, and health and education services in Figures 13-16 show the same

general pattern for the shocks as for the overall economy.

Figure 9: Prior and Posterior Estimates of Parameters for 6 estimation setups.
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Figure 10: Model Fit and Shocks for CPS-A estimation.
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Figure 11: Model Fit and Shocks for JOLTS-A estimation.
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Table 6: Parameter estimates of the DV model in the CPS-A specification

Parameter Prior Posterior

mean st.dev. mode mean st. dev. conf. int. [5-95]

α 0.5 0.2 0.179 0.182 0.020 [0.150, 0.214]

β 0.8 0.1 0.967 0.961 0.012 [0.938, 0.984]

γ 0.5 0.2 0.106 0.079 0.036 [0.008, 0.148]

cu 0.2 0.1 0.026 0.029 0.008 [0.011, 0.045]

cϵ 0.2 0.1 0.065 0.102 0.029 [0.018, 0.178]

ψ 0.5 0.2 0.74 0.70 0.09 [0.44, 0.97]

bL 0.2 0.1 0.091 0.078 0.031 [0.016, 0.135]

dy 0.5 0.2 0.20 0.23 0.06 [0.14, 0.32]

ρx 0.5 0.2 0.90 0.86 0.08 [0.74, 0.98]

ρx2 0.0 0.5 0.08 0.13 0.08 [0.01, 0.25]

σx 0.05 0.02 0.024 0.024 0.004 [0.018, 0.029]

ρφ1 0.9 0.03 0.81 0.81 0.012 [0.77, 0.85]

ρφ2 0.5 0.2 0.47 0.48 0.05 [0.38, 0.58]

ρφ3 0.5 0.2 0.955 0.953 0.015 [0.932, 0.973]

ρφ4 0.5 0.2 0.15 0.13 0.05 [0.05, 0.21]

ρφ5 0.1 0.03 0.08 0.08 0.02 [0.04, 0.12]

ρφ6 0.9 0.03 0.950 0.948 0.010 [0.931, 0.965]

ρφ7 0.9 0.03 0.928 0.936 0.011 [0.915, 0.960]

σφ1 0.1 0.05 0.118 0.118 0.005 [0.111, 0.126]

σφ2 0.05 0.02 0.016 0.017 0.002 [0.015, 0.020]

σφ3 0.1 0.05 0.081 0.082 0.004 [0.075, 0.090]

σφ4 0.01 0.005 0.016 0.017 0.001 [0.015, 0.019]

σφ6 0.005 0.002 0.005 0.005 0.0002 [0.005, 0.006]

Notes: The priors for α, β, γ, cu, cϵ, ψ, ρx, ρφi were drawn from a beta distribution with support on the interval [0, 1], priors

for bL and dy were drawn from a gamma distribution with positive support, priors for σx and σφ
i were drawn from an inverse

gamma distribution with positive support, prior for ρx2 was drawn from a normal distribution.
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Table 7: Parameter estimates of the DV model in the JOLTS-A specification

Parameter Prior Posterior

mean st.dev. mode mean st. dev. conf. int. [5-95]

α 0.5 0.2 0.119 0.123 0.042 [0.094, 0.150]

β 0.8 0.1 0.935 0.932 0.017 [0.906, 0.959]

γ 0.5 0.2 0.021 0.028 0.020 [0.003, 0.053]

cu 0.2 0.1 0.139 0.137 0.013 [0.115, 0.157]

cϵ 0.2 0.1 0.028 0.051 0.021 [0.011, 0.091]

ψ 0.5 0.2 0.421 0.501 0.098 [0.198, 0.820]

bL 0.2 0.1 0.021 0.038 0.017 [0.008, 0.067]

dy 0.5 0.2 0.249 0.309 0.067 [0.197, 0.426]

ρx 0.5 0.2 0.775 0.820 0.086 [0.683, 0.965]

ρx2 0.0 0.5 0.215 0.166 0.085 [0.026, 0.307]

σx 0.05 0.02 0.024 0.022 0.003 [0.017, 0.026]

ρφ1 0.9 0.03 0.782 0.793 0.022 [0.757, 0.823]

ρφ2 0.5 0.2 0.235 0.255 0.319 [0.127, 0.383]

ρφ3 0.5 0.2 0.983 0.981 0.029 [0.971, 0.992]

ρφ4 0.5 0.2 0.540 0.552 0.060 [0.480, 0.628]

ρφ5 0.1 0.03 0.273 0.283 0.010 [0.230, 0.328]

ρφ6 0.9 0.03 0.940 0.943 0.008 [0.928, 0.959]

ρφ7 0.9 0.03 0.937 0.936 0.017 [0.917, 0.956]

σφ1 0.1 0.05 0.102 0.102 0.003 [0.097, 0.107]

σφ2 0.05 0.02 0.017 0.017 0.003 [0.014, 0.019]

σφ3 0.1 0.05 0.054 0.054 0.007 [0.048, 0.059]

σφ4 0.01 0.005 0.014 0.014 0.001 [0.013, 0.016]

σφ6 0.005 0.002 0.005 0.005 0.0002 [0.005, 0.006]

Notes: The priors for α, β, γ, cu, cϵ, ψ, ρx, ρφi were drawn from a beta distribution with support on the interval [0, 1], priors

for bL and dy were drawn from a gamma distribution with positive support, priors for σx and σφ
i were drawn from an inverse

gamma distribution with positive support, prior for ρx2 was drawn from a normal distribution.
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Table 8: Parameter estimates of the SMF model in the CPS-A specification

Parameter Prior Posterior

mean st.dev. mode mean st. dev. conf. int. [5-95]

α 0.5 0.2 0.332 0.338 0.012 [0.315, 0.360]

ψ 0.5 0.2 0.982 0.974 0.016 [0.952, 0.996]

bL 0.2 0.1 0.575 0.572 0.020 [0.534, 0.612]

dy 0.5 0.2 0.341 0.362 0.218 [0.127, 0.573]

ρx 0.5 0.2 0.917 0.849 0.109 [0.701, 0.990]

ρx2 0.0 0.5 0.052 0.100 0.103 [–0.031, 0.248]

ρφ1 0.9 0.03 0.815 0.808 0.026 [0.769, 0.849]

ρφ2 0.5 0.2 0.960 0.804 0.039 [0.530, 0.989]

ρφ3 0.5 0.2 0.970 0.971 0.013 [0.956, 0.987]

ρφ4 0.5 0.2 0.824 0.817 0.030 [0.765, 0.868]

ρφ5 0.1 0.03 0.084 0.083 0.017 [0.047, 0.119]

ρφ6 0.9 0.03 0.949 0.948 0.009 [0.930, 0.965]

ρφ7 0.9 0.03 0.942 0.937 0.015 [0.917, 0.958]

σx 0.05 0.02 0.029 0.028 0.003 [0.020, 0.036]

σφ1 0.1 0.05 0.117 0.118 0.004 [0.111, 0.124]

σφ2 0.05 0.02 0.031 0.031 0.005 [0.020, 0.041]

σφ3 0.1 0.05 0.052 0.054 0.005 [0.045, 0.063]

σφ4 0.01 0.005 0.029 0.030 0.002 [0.027, 0.033]

σφ6 0.005 0.002 0.005 0.005 0.0003 [0.005, 0.006]
Notes: The priors for α, ψ, ρx, ρφi were drawn from a beta distribution with support on the interval [0, 1], priors for bL and

dy were drawn from a gamma distribution with positive support, priors for σx and σφ
i were drawn from an inverse gamma

distribution with positive support, prior for ρx2 was drawn from a normal distribution.
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Table 9: Parameter estimates of the SMF model in the JOLTS-A specification

Parameter Prior Posterior

mean st.dev. mode mean st. dev. conf. int. [5-95]

α 0.5 0.2 0.137 0.142 0.010 [0.130, 0.153]

ψ 0.5 0.2 0.989 0.985 0.016 [0.971, 0.999]

bL 0.2 0.1 0.473 0.465 0.012 [0.441, 0.488]

dy 0.5 0.2 0.451 0.375 0.059 [0.152, 0.578]

ρx 0.5 0.2 0.945 0.923 0.039 [0.864, 0.987]

ρx2 0.0 0.5 0.021 0.031 0.040 [–0.045, 0.104]

ρφ1 0.9 0.03 0.798 0.800 0.007 [0.772, 0.827]

ρφ2 0.5 0.2 0.909 0.882 0.026 [0.788, 0.976]

ρφ3 0.5 0.2 0.969 0.964 0.025 [0.943, 0.985]

ρφ4 0.5 0.2 0.973 0.973 0.011 [0.958, 0.987]

ρφ5 0.1 0.03 0.379 0.377 0.005 [0.374, 0.379]

ρφ6 0.9 0.03 0.941 0.947 0.004 [0.926, 0.969]

ρφ7 0.9 0.03 0.937 0.932 0.008 [0.910, 0.953]

σx 0.05 0.02 0.023 0.024 0.003 [0.020, 0.029]

σφ1 0.1 0.05 0.101 0.101 0.003 [0.096, 0.107]

σφ2 0.05 0.02 0.026 0.027 0.002 [0.021, 0.033]

σφ3 0.1 0.05 0.038 0.038 0.003 [0.033, 0.044]

σφ4 0.01 0.005 0.017 0.018 0.001 [0.016, 0.020]

σφ6 0.005 0.002 0.005 0.005 0.0001 [0.005, 0.006]

Notes: The priors for α, ψ, ρx, ρφi were drawn from a beta distribution with support on the interval [0, 1], priors for bL and

dy were drawn from a gamma distribution with positive support, priors for σx and σφ
i were drawn from an inverse gamma

distribution with positive support, prior for ρx2 was drawn from a normal distribution.
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Figure 12: Prior and Posterior Estimates of Parameters for 12 sectors of the economy using JOLTS data.
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Figure 13: Model Fit and Shocks for Manufacturing Sector estimation.
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Figure 14: Model Fit and Shocks for Trade, Transportation and Utilities estimation.
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Figure 15: Model Fit and Shocks for Business Services estimation.
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Figure 16: Model Fit and Shocks for Health and Education estimation.
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