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Abstract

We present a theory of discrete choice with information costs that supports deliberate stochastic

choice. We use a unique experimental dataset to distinguish between errors arising from limitations

on a decision maker’s cognitive abilities and conscious disregard of information. Experimental

evidence strongly favors the latter explanation. The data also allows us to directly estimate the

shape and size of information costs for individual participants. Furthermore, in line with a dynamic

extension of our theory, we find that accumulated knowledge of the environment improves response

consistency.
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1 Introduction

For decades behavioral choice literature has confronted the challenge of modeling bounded ra-

tionality. The stochasticity of choices when a decision maker faces the same stimuli repeatedly

is a particularly troubling aspect.1 Most responses to this challenge have focused on developing

probabilistic choice models that can fit the observed error distributions.2 These approaches are un-

satisfactory because they do not explain the source of the errors. Understanding whether the errors

arise from a physical limitation that prevents the decision maker from making the right choice or

from a lack of interest has important public policy implications. For instance, if disinterest is the

reason, the decision maker could be incentivized to improve their selection; in the case of a physical

bound, little can be done. This paper seeks to distinguish between errors that come from decision

makers’ inability to identify the better choice and conscious mistakes.

We describe a theory that rationalizes conscious errors as an outcome of a tradeoff between

expending the effort to identify the superior option and realizing the potential benefit from picking

that option. The theory is centered around the assumption that there is a cognitive cost associated

with processing information about the options. More information requires more effort but leads

to higher confidence that the choice is correct. The presence of an information cost is crucial for

the stochastic nature of choice, and the shape of the cost reflects the degree to which choice is

deliberate.

As a microfoundation of this cost, our framework builds on the rational inattention theory of

Sims (2003). Rational inattention theory measures the amount of information processed using a

precise statistical definition from information theory and postulates a cost that limits the capacity

of agents to process information. This cost has been modeled either as a fixed marginal cost or a

fixed capacity limit. Our framework extends the specification of the cost function to accommodate

both. This makes it flexible enough to simultaneously account for physical bounds and allow for

conscious errors.

The main contribution of this paper is its use of a behavioral experiment to discriminate between

the two types of cognitive limitations and shed light on their relative importance. To estimate the

1For a discussion of these issues see among others Mosteller and Nogee (1951), Hey and Orme (1994), Hey (2001),

Regenwetter et. al. (2010) and (2011).
2Major works on probabilistic choice models include, among others, Fechner (1860), Thurstone (1927), Luce

(1959), Block and Marschak (1960), Yellott (1977) and Falmagne (1978).
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shape and size of information processing costs and to put our theory on firm empirical ground, we

use data from a unique behavioral experiment in which each participant is subjected to the same

stimuli many times. This property allows us to directly observe the probabilities of cognitive error.

Since picking the wrong option implies a utility loss, we can trace the relationship between the

probability of an error and the size of the loss. The shape of this relationship informs us about the

curvature of the cost function.

Our estimates of information costs suggest that the majority of participant errors arise from

deliberate decisions to ignore some information. More specifically, the experimental data favors

a functional form of the cost that implies no physical bounds on information processing for the

majority of participants.

We are also the first to provide direct estimates of information costs, a development with far

reaching implications. These estimates can serve as both a benchmark calibration in bounded

rationality models in macroeconmics3 and to facilitate appropriate selection of probabilistic choice

model in the behavioral literature.

There are two additional implications of our findings. First, we find that the majority of

participants in the experiment respond to incentives by processing more information and being more

accurate when the stakes are higher. Thus, models in which agents can rationally adjust information

processing capacity, as if facing a linear subjective cost of information, are empirically more sound

than models with constraints on information in the form of fixed thresholds, commonplace in

the macro literature. This finding is also useful to calibrate the shape of error when studying

other experimental environments. Second, we find that pooling responses from participants in the

experiment can introduce substantial bias into the estimates of information costs and perception

of risk. Thus, our results provide words of caution and guidance on the interpretation of pooled

responses.

To evaluate the possibility that errors may come from limited familiarity with the experimental

setup, we extend our theoretical framework to account for the evolution of beliefs as individuals

learn from previous answers in a repeated-choice environment. The dynamic version of our theory

predicts that over time a decision maker uses their capacity to acquire information about the

environment, which leads to an improvement in the consistency of choices. In agreement with

this prediction, we find that the observed ability of participants to process information and the

3See, e.g., Rubinstein (1998); Gabaix (2012); Mankiw and Reis (2002); Mackowiak and Wiederholt (2009).
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consistency of their choices gradually increase during the experiment. This finding is a warning

for the experimental literature that a large number of repetitions is necessary to distinguish both

probabilistic choice theories and decision theories.4

We contribute to three strands of literature. First, our model of discrete choice under rational

inattention is directly comparable with probabilistic choice models employed by the experimental

behavioral choice literature.5 Hence, our empirical results place restrictions on the selection of

probabilistic choice models when analyzing experimental data obtained in discrete choice environ-

ments. Our findings emphasize the linear cost (logit) model as the preferable model of stochastic

choice, in contrast to the fixed capacity (tremble) model, and encourage experimental setups with

a large number of repetitions of the same stimuli.

Second, we contribute to the active field of dynamic behavioral choice. Our dynamic results

corroborate the experimental finding of Agranov and Ortoleva (2013) that stochastic choice is

deliberate. An extensive overview of theories suggesting that stochastic choice is the product of

optimization of multiple goals can be found in Swait and Marley (2013). However, our emphasis is

on testing whether stochastic choices are deliberate.

The relationship between rational inattention theory and the logit model of discrete choice

has been independently discovered by Matĕjka and McKay (2015). They study a special case

of our static model with non-stochastic choice options and linear costs. Additional implications

of that model for state-dependent choice are explored by Caplin and Dean (2013a, 2013b). Our

paper extends rational inattention theory of discrete choice to repeated settings in a stochastic

environment with non-linear costs and tests its predictions using experimental data. Related models

of imperfect attention, such as Masatlioglu et. al. (2012) and Manzini and Mariotti (2013), differ

from our approach in their consideration set formalism and their emphasis on preference revelation,

while we focus on endogenizing the properties of stochastic choice.

Finally, our findings are relevant for the macroeconomic literature studying implications of

bounded rationality. Much in the spirit of Gabaix (2012), we propose a tractable cost function

capturing the limits of an individual’s ability to process information. In contrast to the assumptions

of Gabaix (2012), as well as to Mankiw and Reis (2001) and Mackowiack and Wiederholt (2009),

4Most experiments repeat each set of choice options no more than 5 times, and pool choices among participants.

Hey and Orme (1994), Harless and Camerer (1994), Holt and Laury (2002) and Birnbaum (2008) are prominent

examples among this majority, while Regenwetter et. al. (2011) belongs to rare exceptions.
5For a detailed discussion of these models see Section 2.4.
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we find that a fixed bound on the information-processing capacity is not supported by experimental

data. Meanwhile, a fixed marginal cost of processing information associated with varying capacity

is in agreement with the data. Our estimates could be a starting point to calibrate information

costs in macroeconomic models.

The paper is organized as follows. Section 2 introduces the model and describes its connection to

models of probabilistic choice. Section 3 describes the experiment and the methodology applied to

experimental data. Section 4 presents the results and compares different decision theories. Section

5 discusses the extension of the model to dynamic environments and tests its predictions. Section

6 concludes. The full description of the dynamic model and all the proofs are relegated to the

appendix. Appendix C elaborates on coding and knowledge.

2 Theoretical Framework

This section formally establishes the theoretical environment of the paper. First, we describe

rational inattention theory and its relationship to probabilistic choice and introduce the information

processing constraint. Second, we describe how rational inattention theory works in a discrete choice

environment. Third, we describe the mapping between costs of processing information and existing

models of probabilistic choice.

2.1 Rational Inattention as a Theory of Probabilistic Choice

Consider a choice between two options, A and B. Standard rational decision theories predict that

whenever option A is preferred to option B, the decision maker will always choose the preferred

option. In reality, people make errors. Experimental evidence suggests that the frequency of

choosing the preferred option is at odds with deterministic predictions of decision theories. To

illustrate this contradiction, Figure 1 displays on the vertical axis the probability of choosing option

A, the horizontal axis displays the value differential between the two options according to a decision

theory. The dashed line shows the predictions of decision theory and the solid line represents a

typical observed mean response averaged across a sample population in an experimental setting,

approximated by Luce’s probabilistic choice model. Experimental evidence shown in Figure 1

suggests that the frequency of making an error depends on the difference in values of the two

options. The bigger this difference, the more consistent are people in their choices. To account for
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Figure 1: Data and Predictions of a Decision Theory

this mismatch between data and theory, the behavioral choice literature routinely postulates some

functional form for the probability distribution of errors and augments decision theory with this

statistical theory of probabilistic choice.

In this paper, we construct a model where the observed frequency of choosing option A can

be fully taken into account as an outcome of rational choice. Our model builds on the fact that

making a decision on which option to choose involves processing information about the options. We

think of someone processing information in order to understand which option is better for them. If

determining the better option requires some effort, and if the gain from finding the correct answer is

not very large, the person may choose to leave some residual uncertainty about the correct answer.

In that case, the person may choose the worse option with some probability.

To gather some intuition, let us consider a person working in a windowless room who must

decide whether an umbrella is needed outside. Without knowing what the weather was over the

past few hours, the person thinks there is a 50 percent chance of rain. To find out the precise answer

the person needs to leave the room and check. However, the person is going to reduce uncertainty

about the weather only if he cares. For instance, if the person plans to spend the next few hours

in the room, then the current weather is immaterial. If the person just needs to get to their car in

a nearby paring lot, they may opt to check the weather online. If the person plans to walk home,
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they may seek out a colleague who just came in.

Whether the decision maker faces a choice of taking an umbrella or not, or among different

gambles, the person will process information to reduce uncertainty to the extent to which they

care about the outcome. That means that residual uncertainty may remain even after information

has been processed, making the decision maker’s choice prone to error. Model-wise, assuming that

a person chooses the amount of information to process is equivalent to assuming that the person

chooses the probability of picking each option.

The challenge in formalizing these ideas is in measuring the amount of information processed

and the associated effort. We build on Shannon’s (1948) information theory that defines the amount

of information processed as the reduction in the uncertainty when going from a prior distribution

to a posterior distribution. For instance, in our example the person deciding on whether to take

an umbrella started off uninformed regarding the weather. By choosing whether to do nothing,

check online or ask a colleague, the person sharpens their knowledge of the weather, which implies

a posterior distribution over the possibility of rain and the likelihood of taking an umbrella. The

amount of information processed, according to Shannon’s information theory, is a statistical measure

of distance between the prior and the posterior.

We build on rational inattention theory by associating a cost to the amount of information

processed that is traded off against the decision maker’s utility gain from choosing the preferred

option. More specifically, we adopt the framework of the rational inattention literature of Sims

(2003), (2006).6

Rational inattention theory’s key difference from standard rational decision theories is that it

allows the decision maker to rationally choose how much information to process and maps this

choice onto their choice frequency. The decision maker is able to select the pieces of information

deemed most relevant and ignore the rest. So long as the decision maker takes into account potential

errors stemming from a disregard of information, inattentive behavior is a natural outcome of the

optimizing framework postulated by rational choice theory. We now turn to the formal description

of the theoretical framework of the paper.

6An early description of the ideas behind rational inattention theory can be found in Sims (1998). An accessible

exposition of rational inattention theory can be found in Wiederholt (2010).
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2.2 The Static Model

Our model builds on the model of Matĕjka and McKay (2015) by considering a discrete choice

problem under rational inattention. While their environment studies choice among deterministic

options, our model extends their setting to accommodate options of any nature. For example, as

we discuss in more detail, our theory accommodates choices among gambles, the outcome of which

is uncertain at the moment the choice is being made by the decision maker.

Consider a decision maker (DM) faced with a choice among K options indexed by k ∈ {1, ...,K}.

We endow the DM with a prior distribution over the set of options denoted by{g(k)}:

{g (k)}Kk=1 ,

K∑
k=1

g (k) = 1, g (k) ≥ 0, k ∈ {1, ...,K} .

We denote the posterior probability distribution over the set of options chosen by the DM by

{s(k)}, where each s (k) denotes her probability of choosing option k:

{s (k)}Kk=1 ,

K∑
k=1

s (k) = 1, s (k) ≥ 0, k ∈ {1, ...,K} .

We use the insight from rational inattention theory that the amount of information processed

by the DM is measured by the distance between the prior g(k) and the posterior s(k):

κ =

K∑
k=1

s (k) log2

s (k)

g (k)
. (1)

In the literature, this measure is known as Shannon’s relative entropy of two distributions.

As noted in Cover and Thomas (1991),7 this formulation constitutes a special case of Shannon’s

Mutual Information when there is only one random variable that affects the DM’s utility. The

interpretation of this quantity is that the more information the DM processes about the options

with respect to her original prior {g (k)}, the higher the relative entropy.

For instance, consider an experimental setting where a participant is asked to choose between

options A and B. In this case, g (k) represents the participant’s prior beliefs about the odds that

A is better than B before seeing the options. If ex ante the participant has no idea which option is

better, the prior, g (k), will allocate a 50 percent probability to each option. Once the options are

laid out in front of the participant, they must to look carefully at each option to make an informed

selection. The extent to which the participant chooses to pay attention to the options sharpens

7See Cover and Thomas (1991), Chapter 2.
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confidence in one identified as superior. The attention that the participant pays is represented by

strategy s (k) and the reduction in uncertainty that that strategy achieves is given by information

capacity κ. Suppose that both options are of similar value. Then staring at the options to tell

them apart does not justify the effort. In this case, s (k) would be close to g (k), resulting in

little information processed and κ close to zero. As a result, the participant will choose an option

randomly. By contrast, if the options differ greatly, the participant may want to determine more

precisely which one is better. In that case, s (k) would place a higher probability on the better

option compared with the uninformed prior. In the limit, if s (k) takes on a unit probability for the

better option, the amount of information processed equals 1 bit and all uncertainty is resolved.

Following rational inattention theory of Sims (2003), we model the DM’s trade-off between the

gain from informed choice and the cognitive effort involved in processing information by constraining

the amount of information that can be processed. We assume that the decision maker has a

cost associated with processing information, represented by a cost function C(κ). The cost is

an increasing convex function of the information processing capacity, κ, whose functional form is

described in (1). We refer to elastic capacity as the notion that κ may vary depending on the

options. The interpretation of elastic capacity is that people may choose to vary the amount of

attention they pay to the options depending on the options themselves. For instance, a choice that

involves a large sum of money may call for a bigger cognitive effort than a choice where a modest

amount of money is involved.

We assume that the cost function enters additively into the objective function. The objective of

the DM is to maximize the expected value of the options, V (k), k ∈ {1, ...,K}, net of the subjective

cost of processing information. The decision-maker’s problem amounts to:

max
s(k)

K∑
k=1

V (k) s (k)− C (κ) (2)

s.t.

κ =

K∑
k=1

s (k) log2

s (k)

g (k)
(3)

s (k) ≥ 0,

K∑
k=1

s (k) = 1 (4)

where s (k) in the objective function (2) represents the DM’s probability of choosing option k.

Equation (3) computes the amount of information processed by the DM and the constraint (4)
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limits the choice of the decision maker to the space of proper distributions. The following theorem

characterizes the optimal solution to the decision-maker’s problem in our static environment:

Theorem 1 If the cost of information, C (κ), is a differentiable increasing convex function of

the amount of information, then the optimal choice probabilities are given by:

s (k) =
g (k) exp

(
V (k)
θ/ ln 2

)
∑K
k̃=1 g

(
k̃
)

exp

(
V (k̃)
θ/ ln 2

) . (5)

where θ = ∂C(κ)
∂κ(s(k);g(k)) is the derivative of the cost function with respect to the amount of informa-

tion, evaluated at the chosen amount of information.

Proof. See Appendix B.

The key implication of the rational inattention model is that the DM chooses to behave proba-

bilistically if information processing is costly. This remains true so long as the prior is not degener-

ate. As we discuss in Section 5, if we extend the model to a repeated setting, we can rationalize the

prior as an outcome of the decision-maker’s learning process. In that case, even in the stationary

distribution, after the learning process is finished, the DM’s behavior remains probabilistic.

Equation (5) represents the central testable prediction of our model. It states that the DM’s

choice is more precise when the difference in value between the options is more sizeable. Equation

(5) also determines how the relationship between the values of the options, V (k), and the choice

precision, s (k), depends on the cost function C (κ). We explore this relationship in Section 2.3 and

exploit it to estimate the cost function that is consistent with the experimental data in Section 4.

Another key implication of the rational inattention model is that discrete choice among any

finite number of options of any nature, so long as information costs are convex, implies a choice

probability distribution of the multinomial logit form as described by (5). To illustrate that the

options themselves can be stochastic consider the case of options being gambles. Assume that each

option k ∈ {1, ...,K} has J possible outcomes with Xkj representing payoffs and pkj respective

probabilities:

k : {Xkj , pkj}Jj=1 ,

J∑
j=1

pkj = 1, pkj ≥ 0, j ∈ {1, ..., J} .

In this case, the amount of information processed by the DM is captured by Shannon’s Mutual

Information of the joint distribution of the random variables K̃ and J̃ that represent the choice
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of gamble and the outcome of the gamble. The mutual information between K̃ and J̃ denoted as

I
(
K̃; J̃

)
is given by:

I
(
K̃; J̃

)
=

K∑
k=1

J∑
j=1

f (k, j) log2

(
f (k, j)

g (k) pkj

)
,

where f (k, j) = s (k) pkj is the joint distribution of random variables K̃ and J̃ . Note that the

DM has no means of influencing the possible outcomes in J̃ or affecting the probability pkj . It

follows that in this case the uncertainty that is beyond the DM’s control washes away and mutual

information simplifies to relative entropy (1):

I
(
K̃; J̃

)
=

K∑
k=1

J∑
j=1

s (k) pkj log2

(
s (k) pkj
g (k) pkj

)
=

K∑
k=1

sk log2

(
s (k)

g (k)

)
def
= I (s (k)) ,

where we indicate by I (s (k)) the dependence of information only on the choice distribution s (k)

for a given prior g (k).

Let us review special cases of the result in Theorem 1. For the case where the cost function is

linear, the result in Theorem 1 is a generalization of the choice model of Luce (1959). To see this,

assume no prior bias regarding the gambles,8 suppose that there are K = 2 options labeled A and

B. Then the formula reduces to:

s (A) =
1

1 + exp
(
V (B)−V (A)

θ/ ln 2

) . (6)

However, our result is more general, since it can account for the DM’s prior bias towards one

option over the other stemming from the way options are presented and from experience. Our

model provides an additional source of generality. As we discuss in the next subsection, by varying

the cost function, C (κ), we can replicate as special cases the error distributions generated by most

probabilistic choice models used in the literature.

More importantly, our theory provides a rationalization to probabilistic choice models. Note that

the structural forms (5) and (6) are derived from first principles. Intuitively, rational inattention

theory predicts that the DM should flip a biased coin when making a selection. The bias of the coin

is endogenous. It depends on the trade-off between the marginal benefit of being more attentive

and the marginal cost of processing more information, captured by the expression θ = ∂C(κ)
∂κ . This

transforms parameter θ, interpreted as the curvature of the error distribution in most existing

models, into a preference parameter that characterizes the DM’s costs of processing information.

8That is, assume that {gk} is uniform and equals
{

1
K

}
.
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The goal of the empirical part of the paper is to estimate the parameters of the cost function,

C (κ). Estimates of the information cost function shed light on how likely people are to err based

on the environment they face and inform us about the way people change information processing

capacity in response to changes in the values of choice options.

The shape of the error distribution depends on the DM’s ability to adjust the amount of infor-

mation being processed. For instance, if the DM faces a capacity threshold, then the probability

of making an erroneous choice would be constant, independent of the options. By comparison, if

the DM can choose how much information to process by putting varying degrees of effort, then

they would respond to incentives. In this case, if the DM perceives that the difference between the

options is so small that it is not worth paying close attention, the DM will lack a strong preference

between the two options and will choose randomly. The more the DM cares about one option over

another, the more frequently they will choose the preferred option.

2.3 Probabilistic Choice Models and Information Costs

Most empirical studies of choice under risk attribute observed deviations from behavior implied

by a decision theory to random errors made. Probabilistic choice models take various functional

forms linking the choice probability, s (z), to the value differential, z, between an option and its

alternative. The value differential comes directly from decision theory.

Three major shapes of the probabilistic choice function are commonly used. First, Fechner

(1860)’s model of random errors used in Hey and Orme (1994) makes use of a Gaussian cumulative

density function (probit). Second, Luce (1959)’s choice model used by Holt and Laury (2002) implies

a logistic curve. Third, the “tremble” model of Harless and Camerer (1994) sets the probability of

a misstep to a constant, τ . There are a number of generalizations building on these three models

described in Table 1.

Note that all of these models are symmetric with respect to positive and negative values of the

value differential. The left panel of Figure 2.1 demonstrates that all of these shapes can be well

captured by a combination of two factors. The first is the slope of the function as it passes through

the point of indifference. The second factor is the asymptotic probability of a misstep, when one

choice option strongly dominates another.

Both of these factors have an intuitive interpretation in our rational inattention (RI) model.

Recall that our RI model with a constant marginal cost of information, θ̄, reproduces the logit
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specification of Luce (1959). Thus, the RI model interprets the slope factor as the marginal cost of

information, when the cost function is linear.

Now consider the other, more common, assumption made in the inattention literature where

agents face a fixed capacity constraint, κ̄. In this case the cost of information is zero for all values

below κ̄, but becomes vertical exactly at κ̄. In this case, the RI model predicts choice probabilities

identical to the tremble model. Thus, the RI model interprets a constant misstep probability as

evidence of a capacity constraint on information processing.

To capture both of these factors as well as all their combinations, we adopt a flexible specification

for the information cost function. We assume the following functional form:

C ′ (x) = θ̄π/ arccot

(
x− κ̄
ρ

)
, (7)

where the cost of information, θ̄, is non-negative, the capacity constraint, κ̄, takes values in the

unit interval, and the curvature parameter, ρ, takes a value much higher than 1.9

The right panel of Figure 2 illustrates the properties of this cost function and compares it to

cost functions implied by other probabilistic choice models. Note that all of the existing models

can be well approximated by a combination of a constant marginal cost, θ̄, turning into a capacity

constraint, κ̄. Table 1 reports the corresponding values of these two parameters for other choice

models in the literature. Note that the additional factors introduced by the Contextual Utility

model of Wilcox (2011) as well as the Decision Field Theory of Busemeyer and Townsend (1993)

can be interpreted as distortions of the decision theory, while the implied probabilistic choice model

remains logit.10

2.4 Heterogeneity and Aggregation Bias

The literature on behavioral choice and the macroeconomic literature often study combined choices

of all participants in an experiment or market and treat them as if coming from a single “repre-

sentative” decision maker. The macroeconomic literature commonly refers to this fictional decision

maker as the “representative agent.” This concept is different from the average participant of the

9In our estimation we set ρ = 600. This value is high enough to capture the transition, while maximum likelihood

estimation tends to set this value even higher.
10Although these distortions are well-specified for our experimental setup, they are hard to map directly into

probability weighting functions. Our hope is that our generalized beta weighting function, described in Section 3.2,

is flexible enough to meaningfully capture these distortions for our specific gamble set.
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Table 1: Functional Representation of Probabilistic Choice Models

Model Formula Cost Function

Fechner/Probit s (z) = F
(
z
σ

)
θ̄ ≈ .41σ κ̄ = 1

Luce/Logit s (z) = Λ (λz) θ̄ = 1/λ κ̄ = 1

Tremble s (z) =
(

1
2 + 2τ−1

2 sgn (z)
)

θ̄ = 0 κ̄ = I (τ)

Truncated Fechner s (z) = F
(
[z]

z0
−z0 /σ

)
θ̄ ≈ .41σ κ̄ = I

(
F
(
− z0σ

))
Hetero. Fechner s (z) = F

(
z/eλ|z|

)
θ̄ ≈ .41σ κ̄ < 1

Contextual Utility s (z) = Λ
(
λz/

(
u
(
X
)
− u (X)

))
θ̄ = 1/λ κ̄ = 1

Decision Field Theory s (z) = Λ
(
λz/

√
V ar (z)

)
θ̄ = 1/λ κ̄ = 1

Rational Inattention s (z) = Λ
(

z
C′(I(s(z)))

)
C ′ (x) = θ̄π/ arccot

(
x−κ̄
ρ

)
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Figure 2: Error Models and Corresponding Cost Functions
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experiment, i.e. the participant with average values of all parameters characterizing their behavior.

We call the difference between the properties of choices of the average experiment participant and

the representative agent an “aggregation bias.”

The experimental data allow us to investigate the direction of aggregation bias in our sample. To

this end, suppose that participants differ only in their cost of processing information, θi. Then, the

following theorem predicts the direction of aggregation bias. The experiment allows us to measure

the size of this bias.

Theorem 2 When agents differ in their cost of information θi, the inverse cost of information

of the representative agent is always biased downwards compared with the average across inverse

costs of information of individual agents:

1

θRA
<

1

N

N∑
i=1

1

θi
.

Proof. See Appendix B.

The key implication of Theorem 2 is that we should expect aggregate behavior to appear as if

produced by a more inattentive representative agent relative to the average individual. Thus, we

should expect to encounter more inattentive behavior in the aggregate than in individual data.

3 Methodology

3.1 Experimental Setup

In order to assess the relevance of the cost of information and compare the models described in

the previous section, we use experimental data collected in Michel Regenwetter’s laboratory at the

University of Illinois at Urbana-Champaign in Summer 2009. Each participant was asked the same

question repeatedly a large number of times, the main property of interest in the experimental

setup. The collected data contain observed frequencies with which each subject chose from each

pair of gambles as well as the sequence of questions and answers. These data allow us to test

rational inattention theory at the individual level.

Experimental data contains answers of N individuals who were repeatedly asked to compare

M pairs of gambles. Each individual faced each gamble L times. The M× L overall gambles

per individual were shuffled to ensure that memory effects did not impact the experiment. It
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was conducted in a laboratory space at the University of Illinois at Urbana-Champaign. Forty

individuals participated in the study, roughly evenly split by gender, all approximately of college

age. The experiment was conducted over two sessions, separated by at least four days for each

participant. Each session was not time constrained, taking roughly one hour to complete. At the

beginning of each session, a clear description was given of what to expect from the experiment and

several practice gambles were played. The participants were also warned that each pair of gambles

could be selected at the end of the session to be played for real, making clear that their choices

could affect their final payoff.

Each question contained two gambles, A and B, with parameters {X1, pX , X2, 1 − pX} and

{Y1, pY , Y2, 1− pY }.11 Gambles were randomly uniformly drawn from the whole domain of potential

gambles following the procedure proposed by Rieskamp (2008).

One advantage of this procedure is that by construction, it does not favor any particular theory.

Thus, the gamble space generates no a priori bias to the estimates of the parameters.12 Second, this

gamble selection procedure guarantees that costs associated with coding information about gambles

to be processed are roughly the same for all gambles. This puts all choices on equal ground and

eliminates bias associated with the possibility of inefficient coding.

Gamble outcomes were selected from a uniform distribution over [0,30] in 0.01 increments.

Probabilities were selected from a uniform distribution over [0,1] in 0.01 increments. About 59% of

these gambles were screened because either one gamble showed first-order stochastic dominance over

the other or one gamble had at least double the expected value of the other. 20 pairs were randomly

selected from the remaining gambles. Table 2 presents the gambles used in the experiment.

Participants were presented with a sequence of gamble pairs, one pair at a time. Probabilities

were displayed in the form of pie charts. Participants could choose only one gamble from each

pair. Gamble pairs were ordered by the computer quasi-randomly, i.e. drawn from a uniform

distribution, with the condition that the same pair never be presented in succession. Over the

course of a session, each gamble pair was presented 30 times, so participants made 600 choices in

each of the two sessions. At the end of each session, a computer randomly selected one gamble

11In the dataset N = 40,M = 20, L = 60.
12This setup is important. For instance, consider the classical Experiment I from Tversky (1969). The gambles

for that experiment were selected in a subspace of all gambles which have almost the same expected payoff. Using

such a set of gambles in our experimental setup would give us no ability to identify parameters characterizing costs

of information.
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Table 2: Gamble Payoffs and Probabilities

N o
− X1, $ pX X2, $ Y1, $ pY Y2, $

1 29.38 0.65 1.19 18.00 0.68 3.21

2 27.98 0.42 18.89 25.44 0.47 3.90

3 26.44 0.52 1.92 26.03 0.34 5.77

4 25.05 0.24 24.01 25.32 0.66 10.56

5 23.64 0.71 10.78 25.03 0.98 6.86

6 20.76 0.80 11.61 12.42 0.93 8.14

7 19.38 0.23 2.46 12.57 0.96 0.73

8 18.02 0.39 4.97 15.01 0.49 14.26

9 16.66 0.60 9.03 16.32 0.19 10.87

10 19.58 0.48 15.17 26.39 0.45 10.07

11 13.88 0.41 5.05 8.91 0.70 8.67

12 29.83 0.38 12.47 25.10 0.85 22.74

13 21.78 0.72 11.16 21.30 0.66 20.91

14 9.61 0.17 6.49 9.87 0.31 4.17

15 16.11 0.20 8.10 22.75 0.13 6.18

16 6.88 0.53 6.69 13.86 0.90 0.96

17 24.08 0.90 5.02 23.74 0.07 14.41

18 18.56 0.99 1.70 27.68 0.97 2.16

19 22.51 0.88 0.00 19.30 0.71 0.73

20 22.57 0.70 0.12 11.53 0.79 2.81
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out of the 600 the participant had chosen and played for real. The outcome of the computer picks

was paid to the participant together with a $5 flat payment. The average payment was $20.97 per

session.

3.2 Decision Theories

Our theory of rational inattention complements decision theory, which determines valuations of

choice options V (k) depending on the payoffs Xkj and their objective probabilities, pkj . In this

paper we estimate individual information cost functions considering several decision theories for two-

branch gambles. We follow the literature in assuming that individual valuations of sure outcomes

are given by the utility function with constant relative risk aversion:

U (X) = α
X1−γ

1− γ
, (8)

where α is a positive constant, γ ∈ R represents risk-aversion of the decision-maker.13

Most existing decision theories, when applied to our setup, can be expressed as particular forms

of the rank-dependent utility (RDU) model, developed by Quiggin (1982). RDU models commonly

assume that the value of an option is determined as a weighted sum of utilities of payoffs:

V (k) =

J∑
j=1

wj (pkj)U (Xkj) , (9)

but vary in their probability weighting function, wj (p). In the case of two-branch gambles, rank-

dependence shows itself in the assumption that the weight w (p) corresponds to the branch with a

higher payoff, while the weight 1− w (p) is attached to the lower payoff.

Prominent special cases include expected utility (EU) theory of von Neumann and Morgenstern

(1944), where the weights are equal to objective probabilities, cumulative prospect theory (CPT) of

Tversky and Kahneman (1992), the transfer of attention exchange (TAX) model of Birnbaum and

Chavez (1997). Table 3 describes the various functional forms for the weighting function adopted

in the literature. To allow for the possibility of each of these functional forms simultaneously, we

extend Wilcox’s (2010) beta weighting function by attaching a scale parameter to it. In our analysis,

13We also tried a more general specification of utility used by Holt and Laury (2002) which adds global absolute

risk aversion to the utility function. We found that this specification does not improve the fit of the model.
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Table 3: Weighting Function in RDU

Decision Theory Weighting Function

EU, Von Neumann, Morgenstern (1944) w (p) = p

Karmarkar (1979) w(p)
1−w(p) =

(
p

1−p

)φ (
δ

1−δ

)1−φ

Kumaraswamy (1980) w (p) = 1−
(
1− pδ

)φ
CPT, Tversky, Kahneman (1992) w (p) = pφ

(pφ+(1−p)φ)
1
φ

Goldstein, Einhorn (1987)

Lattimore, Baker, Witte (1992)
w (p) = δpφ

δpφ+(1−p)φ

Wu, Gonzalez (1996) w (p) = pφ

(pφ+(1−p)φ)
δ

TAX, Birnbaum, Chavez (1997) w (p) = δpφ

pφ+(1−p)φ

Prelec (1998) w (p) = exp
(
−δ (− ln p)

φ
)

Wilcox (2010) w (p) = B (p, φ, η) /B (φ, η)

Generalized Beta w (p) = [δB (p, φ, η) /B (φ, η)]
1

we adopt the following generalized beta weighting function:

w (p) = min

{
δ

´ p
0

(x)
φ−1

(1− x)
η−1

dx´ 1

0
(x)

φ−1
(1− x)

η−1
dx
, 1

}
, (10)

where behavioral parameters φ, η and δ take positive values. Our specification boils down to

expected utility when φ = η = δ = 1. Also, when γ = 0 agents are risk-neutral.

Although we are unaware of closed-form expressions converting parameters of other decision

theories into these parameters, it is possible to find a parameter combination for the generalized

beta function that represents each of these decision theories with a high degree of accuracy. However,

our functional form is more general: Under many parameter values, none of the existing decision

theories can approximate choices implied by our specification.

3.3 Estimation of Parameters

We have four parameters, {γ, φ, η, δ}, which fully capture most existing decision theories, and two

parameters of the generalized cost function (7),
{
θ̄, κ̄
}

, which summarize the DM’s limited ability

to process information. Parameter α in equation (8) does not appear in the list because it scales

both the utility function and the cost of information. It can be removed by converting the cost of
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information θ from utils per bit to dollars per bit using a conversion factor:
∑K
k=1 g (k) ∂V (k)

∂Xk
for

each gamble. This is consistent with intuition, as the individual scale of utility affects the absolute

cost of information in utils per bit, but does not affect the relative cost measured in dollars per bit.

The experimental data allows us to estimate jointly the values of all six parameters
{
θ̄, κ̄, γ, φ, η, δ

}
for each of N individuals, or any subset of parameters for any restricted version of the theory. The

likelihood function of the data is the density of a binomial distribution where sa,i denotes the bino-

mial choice probability of participant a on question i. The log likelihood of option A being chosen

x times and option B being chosen y times given the deep parameters ωa =
{
θ̄, κ̄, γ, φ, η, δ

}
and

parameters of the question ζi = {X1, X2, pX , Y1, Y2, pY } is given by

logL (x, y|ω, ζ) = log

(
y

x+ y

)
+ x log sa,i (ω, ζ) + y log (1− sa,i (ω, ζ)) . (11)

The choice probability, sa,i (ωa, ζi), can be computed by solving numerically the equation:

sa,i (ωa, ζi) =
1

1 + exp
(
− V (A)−V (B)
C′(I(sa,i)|ωa)/ ln 2

) , (12)

where C ′ (I|ωa) is the marginal cost function of participant a defined in (7), and I (sa,i) denotes

the amount of information implied by the choice probability sa,i:

I (sa,i) = sa,i log2 sa,i + (1− sa,i) log2 (1− sa,i) + 1. (13)

Because our specification of the marginal cost function is convex, Theorem 5 implies that the

solution of equation (12) is unique. We use this specification to estimate ωa by maximizing the sum

of log likelihoods of choices made by participant a defined as:

Λa =

M∑
i=1

logL (xi, yi|ωa, ζi) . (14)

To compare models we sum up individual likelihoods, and then penalize the joint likelihood

for over-parameterization using the Bayes Information Criterion (BIC) and the Akaike Information

Criterion:

BIC = −2

N∑
a=1

Λa + n lnO, (15)

AIC = −2

N∑
a=1

Λa + 2n, (16)

where n is the total number of estimated parameters, and O is the total number of observations.
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To compare nested model specifications, where we allow participants to change a subset of

parameters across two sessions, we use the likelihood ratio test that follows a chi-squared distribution

with the number of restrictions, r, determining degrees of freedom:

LR = −2
(
ΛRa − ΛUa

)
∼ χ2 (r) . (17)

4 Results

We start by describing static estimates of the parameters of cost functions. We use these estimates

to study the properties of the cost functions to identify participants that face information processing

capacity constraints. We describe the amount of heterogeneity in cost functions and measure the

size of aggregation bias. We discuss in detail the estimates of parameters of decision theories,

concluding that there are large variations in these estimates as well.

The first three columns of each panel in Table 4 report the estimates of parameters of the

marginal cost function for all 40 participants in the experiment. For each participant we report the

inverse of the estimated value of the marginal cost of information, 1/ ˆ̄θ, measured in bits per cent,

and the estimated value of the capacity constraint, ˆ̄κ, in bits.

As the first observation, we note that variations in the estimates of the capacity constraint are

not particularly large across individuals; most estimates are indistinguishable from 1. The fourth

column of each panel in Table 4 reports the likelihood ratio test statistic for the hypothesis that

the capacity constraint is absent, i.e. H0 : κ̄ = 1. Each test statistic has a chi-squared distribution

with 1 degree of freedom. However, rejecting the null is not sufficient to conclude that a participant

has a capacity constraint. We need to check two additional conditions.

First, we verify that the estimated value of the capacity is sufficiently below 1 to be meaningful.

Note that if a participant accidentally made a single misstep while answering the remaining 59

repetitions of the question in line with decision theory, we would conclude that the participant

processed I (59/60) = 0.877 bits per question. Hence, any κ̄ > 0.877 is indistinguishable from

having no capacity constraint and answering all 60 questions consistently.

Second, we verify that the estimated value of κ̄ is achieved at least theoretically in a few questions

in our experiment. The low estimate of the capacity and the rejection of the null may be driven

by restrictions we place on the functional form of the cost function, rather than evidence of the

presence of a capacity constraint.
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In Table 4, we mark with an † sign the participants with a capacity constraint, which we

identified by checking three criteria: 1) that the likelihood ratio is above the critical value of 5.0;

2) that the estimated capacity is below 0.877; and 3) that the capacity constraint is achieved for at

least 3 questions in our sample. We find that 12 of 40 participants of our experiment satisfy these

conditions. Although these conditions might appear stringent at first glance, relaxing any one of

the two additional requirements does not add more than a couple participants to the list.

The first conclusion that we draw from our estimates is that the number of participants with a

capacity constraint does not exceed one third. This implies that the majority of participants respond

to incentives by making more consistent choices when stakes are higher. Even those participants for

whom we identify a capacity constraint have a positive cost associated with lower values of capacity.

This implies that all participants respond to incentives for a large interval of value differentials. Only

when stakes are especially large does the capacity constraint prevent some participants from further

increasing the precision of their choices.

We observed that the estimates of marginal costs of information differ by more than an order

of magnitude across participants of the experiment. Even after removing clear outliers, the set

of estimates covers the whole range between 1.8 bit per cent and 25 bits per cent. This finding

together with Theorem 2 suggests that we should expect some aggregation bias in estimates for the

representative agent.

The cost estimates for the “representative agent” (RA), i.e. from treating the combined set of

choices of all 40 participants as if coming from a single decision-maker, are reported at the bottom

of Table 4. We find that the RA’s marginal cost of information is 4.7 bits per cent, and has a

capacity constraint of 0.73 bits. These estimates are in sharp contrast with the mean of individual

costs of 15.3 bits per cent (median of 8.9) and the mean capacity constraint of 0.85 bits (median of

0.91). Restricting the comparison to subgroups of participants does not undermine this result.

Our second conclusion from the static estimates is that using combined choices of different

participants introduces a substantial aggregation bias into an average individual’s estimates of the

cost function. As predicted by Theorem 2, the aggregation bias makes choices of the representative

agent much less consistent relative to those of the average individual. The observation that the

combined choices of individuals are inconsistent is often interpreted as showing that the average

participant is very inconsistent and has substantial rationality limitations. We show that this

observation may be a consequence of aggregation bias.
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Table 4: Fixed capacity vs. fixed costs

N o
− 1/ ˆ̄θ ˆ̄κ LR LRθ LRκ N o

− 1/ ˆ̄θ ˆ̄κ LR LRθ LRκ

1 16 .88 31 9.0§ 9.6§ 21 3.5 .47 8.6† 0.8 12§

2 1.8 .22 36† 0 1.3 22 5.0 .58 27† 5.3§ 20§

3 5.9 .93 7.4 14♣ 3.5 23 11 .88 9.7 38§ 11§

4 7.6 1 0.4 0.3 0 24 5.4 .71 23† 34♣ 25♣

5 25 1 0 18§ 0 25 3.9 .32 40† 65♣ 150♣

6 16 1 0.3 0.1 0 26 9.5 1 0.3 44§ 0

7 12 1 0.2 0 0 27 6.5 .91 4.5 19§ 5.0§

8 5.1 .95 1.1 7.7§ 1.5 28 6.9 .83 30† 48§ 24§

9 8.9 .93 18 0.3 2.5 29 14 1 0.1 9.6§ 0

10 10 .44 65† 12§ 0.6 30 6.8 .91 9.3 0.3 0.1

11 8.9 1 0.4 0 0 31 9.1 .74 22† 5.8§ 1.6

12 51 .89 102 21 5.8 32 9.4 .75 22† 46§ 11§

13 10 .75 36† 0.3 3.0 33 10 1 0.4 0 0

14 4.4 .43 62† 2.6 0 34 38 .95 47 68§ 10§

15 3.4k .49 169 0 62§ 35 18 .91 11 0.6 0

16 11 .90 28 0.1 1.0 36 8.8 .69 29† 4.9 24§

17 5.8 .63 24 21§ 0.8 37 10 1 0.2 22♣ 0

18 6.9 .92 0.9 0 6.3§ 38 7.0 1 0.5 0 0

19 566 .94 40 0 0 39 8.1 1 0.2 11§ 0

20 8.8 .96 5.7 129§ 5.5§ 40 5.9 1 0.4 4.6§ 0

RA 4.7 .73 443† 114§ 0.1

-No
−participants, 1/ ˆ̄θ -inverse of the estimated marginal cost of information in bits per cents, ˆ̄κ estimated capacity in

bits, LR - Likehood ratio test; LRθ -LR test for the hypothesis that costs are equal across the two sections, LRκ - LR test

for the hypothesis that capacities are equal across the two sections. RA -representative agent, † - capacity constraint

present (12 participants), § - lower information cost in second session (21 participant), ♣ - higher information cost in

second session (4 participants). Likelihood ratio test statistics are distributed as χ2(1). The critical values for this test

are 3.8 at 5%, 5.0 at 2.5% and 6.6 at 1%. k means 10
3
.
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Table 5: Estimates of parameters of decision theories

N o
− γ̂ φ̂ δ̂ η̂ N o

− γ̂ φ̂ δ̂ η̂

1 0.62 5.57 4.78 0.85 21 -1.96 2.71 2.11 1.00

2 -2.27 3.81 2.88 1.83 22 0.42 0.68 1.49 0.89

3 -1.22 3.01 2.37 0.54 23 0.29 0.56 2.10 0.66

4 -0.63 0.44 0.41 0.70 24 -0.94 0.43 0.33 0.90

5 0.56 1.62 1.57 0.62 25 -1.68 4.02 3.72 0.92

6 0.22 2.37 1.97 0.59 26 1.80 1.38 1.09 0.76

7 -0.70 0.44 0.49 1.14 27 0.17 2.85 2.13 0.58

8 -0.41 1.03 0.78 0.31 28 0.29 5.05 4.35 0.52

9 -0.83 1.58 1.63 0.89 29 0.71 1.87 1.90 0.56

10 1.50 0.14 0.86 0.57 30 -1.54 0.42 0.00 3.8k

11 -0.18 1.08 1.46 0.84 31 1.06 0.21 0.59 0.69

12 -0.14 0.33 0.00 2.3k 32 -1.79 5.16 5.01 0.62

13 1.12 0.38 0.75 0.80 33 0.73 0.14 0.10 1.40

14 -7.5 174 176 1.00 34 0.53 0.32 0.00 1.7k

15 -1.08 0.59 0.96 0.52 35 1.94 1.74 1.61 0.79

16 -0.14 0.60 1.11 0.90 36 -3.23 3.84 3.34 0.60

17 0.77 0.58 1.06 0.79 37 0.78 1.61 1.73 0.54

18 -1.64 2.02 0.88 0.56 38 -1.23 2.98 2.86 0.32

19 -0.22 0.42 0.67 0.67 39 0.52 0.55 1.19 0.83

20 0.18 1.93 1.83 1.00 40 -0.54 9.9 15.9 0.31

RA 0.11 1.10 1.16 0.70
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Table 5 shows the estimates of parameters of decision theories for each participant over the whole

sample. Variations in the risk-aversion parameter γ̂ are quite substantial. Risk aversion covers a

wide interval of values — from as high as +2— a relatively high level of risk-aversion compared to

other experimental studies,14 to as low as -2, which indicates a strong risk-loving attitude. However,

there is only a mild difference between the average estimate of risk aversion, -0.39, and the RA’s

risk aversion value, 0.11.

There are similarly large variations in all the other parameter estimates. Estimates of the

curvatures of likelihood functions indicate that only a tiny fraction of variation in these parameters

across subjects can be attributed to measurement error. Most point estimates of parameters of the

decision theory have relatively small standard errors.

One indication of variations in RDU parameters is the ability of different weighting functions

from the literature to capture the observed weighting functions. We can roughly break down 40

participants into two groups. The first consists of participants for which the weighting function

can be well approximated by a functional form from the literature. The functional forms that we

find to fit best are TAX (15 participants), CPT(6 participants) and Prelec (2 participants). The

second group includes 17 participants who cannot be approximated well (within 2 percent root

mean-square error, RMSE) by any existing versions of RDU.

In addition to the generalized-beta specification of preferences, we redid the entire estimation

exercise for an expected utility model. We find that all of our results hold in the EU specification

as well: 1) the linear cost model fits most participants better than the fixed capacity model; 2)

heterogeneity in cost and risk-aversion parameters is slightly bigger; 3) the dynamic behavior is

very similar to that estimated in section 5 under the RDU specification.

Table 6 compares the fit of three models based on loglikelihood (LL), Bayesian Information

Criterion (BIC) and Akaike Information Criterion (AIC): our generalized-beta specification of rank-

dependent utility (RDU) and the expected utility model (EU). Overall, both the BIC and the AIC

for RDU are much lower than that for EU (a lower value indicates better fit). We find that 36

out of 40 participants are better described by the RDU specification than by the EU specification,

while for the other four participants the EU specification is more parsimonious.

Overall, we find strong evidence in favor of the rank-dependent model for most experiment

14The standard estimates of Holt and Laury (2002), who aggregate across subjects, are in the range of positive

0.3-0.5.
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Table 6: Model fit across decision theories

Model LL n BIC AIC

1. EU -11795 120 24884 23830

2. RDU -7727 240 18041 15934
Legend: EU -Expected Utility theory, RDU -Rank-Dependent Utility theory, LL -log-likelihood, BIC -Bayes’ Information

Criterion, AIC - Akaike Information Criterion.

Note: 36 out of 40 participants are better described by RDU than EU whereas for 4 participants EU is more parsimonious.

participants. Meanwhile, the behavior of the RA is barely distinguishable from that predicted

by EU model. The weighting function of the RA can be well approximated by a straight line that

discounts each probability at a constant rate of 0.7. Recall that we estimated the RA’s risk aversion

parameter to be close to zero.

Heterogeneity among participants may be the main reason has been so hard to test and compare

models of RDU in existing studies. The differences in parameters for participants of decision theories

are so large that most of them would be attributed to noise if we pooled together the choices of all

participants.

5 Dynamic Extension and Its Implications

The experimental setup with repeated questions introduces an additional dimension of information

relevant for decision-making that participants can acquire. Before a participant faces the first ques-

tion he has little knowledge of how many different pairs of options there are, the types of options, and

their value differentials. As the experiment unfolds the participant accumulates knowledge about

the experimental setup. Specifically, the participant may notice the number of unique questions

and the likelihood of encountering them again. Accumulating this knowledge is beneficial because

it can sharpen perception and reduce the likelihood of an error. This incremental processing of

information must be taken into account in order to assure better assessment of conscious errors.

This suggests that participants’ choices should be less precise at the beginning of the experiment

than at the end. As a result, we might confuse errors stemming from processing information about

the value of the options with errors due to fuzzy knowledge of the environment. Discriminating

between these two types of error requires a dynamic model.

In Appendix A we describe an environment where the DM faces questions repeatedly. The DM
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starts with a prior perception that she rationally updates using information acquired answering the

previous questions. We show that in this setting, the evolution of the decision maker’s knowledge

is closely related to the stochastic process from which the questions are drawn. Nevertheless,

if questions are generated using a stationary transition process, then the prior converges to its

stationary distribution. This is exactly the case for our experimental setting.

The dynamic version of our model predicts that the DM should behave probabilistically in the

limit and that choice probabilities may evolve over time, eventually converging to a stationary

distribution. Our model has closed-form predictions for this stationary distribution of choices,

represented by the static model. Using the predictions of the static model, it is possible to use

experimental data to uncover all of the DM’s deep parameters.

However, it is much harder to find the mapping between these deep parameters and the dynamic

changes in behavior before convergence. This is because the DM may start the experiment with

different prior biases, and the DM’s observed choices are insufficient to make inferences about this

prior bias. Finally, it is hard to know the speed of convergence to the stationary distribution ex ante

without knowing all the deep parameters and the prior bias. We can only hope that 60 repetitions

of each question are enough for convergence to be achieved by the end of the experiment. For this

reason, we do not attempt to estimate the dynamic model. Instead, we use the static model as an

empirical tool. While precise in the limit, the static model serves as a good approximation of the

DM’s behavior before convergence has been achieved.

We use the first-order conditions of the dynamic model to simulate the model starting from

different priors converging to the true stationary distribution. Using Monte-Carlo simulations, we

show that this predicted behavior of beliefs maps uniquely into the dynamic behavior of rolling-

window estimates of information costs. Specifically, if beliefs converge monotonically from some

initial beliefs towards a uniform distribution, then the cost estimates decline over the course of the

experiment converging to the true value of costs in the limit.

There are two main implications of the dynamic model.

The first implication is that acquaintance of the DM with the experimental setup lowers our

estimates of the DM’s costs of information. In particular, if two identical experimental sessions are

confronted, our estimates of information costs should be lower in the second session than in the first

session. This is because knowledge of the statistical properties of the experimental setup acquired

in the first session affects the prior bias with which the DM enters the second session. This acquired
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knowledge should make decisions sharper and more consistent in the second session.

The second implication is that, as the experiment unfolds, people make monotonically sharper

and more consistent choices. This dynamic prediction involves the behavior of the DM within the

same experimental session. The estimate of costs of information should monotonically decrease

within an experimental session, while the consistency of choices should monotonically increase.

This is because the dynamic process of updating the prior via Bayes’ rule, predicted by our model,

implies monotone convergence of the prior toward the uniform stationary distribution.

The first goal of the empirical analysis is to test the prediction of the dynamic model — if

participants acquire information about the experimental environment then their estimated costs

of information should fall between the two sessions. The second goal is to study the speed of

convergence to the stationary distribution of attention.

Our inference proceeds in three steps. In the first step, we apply the static model to the whole

dataset as if the DM starts in the stationary distribution. Estimates of the parameters of the DM’s

decision theory obtained this way should be close to the true parameters, because the decision theory

determines the ordering of options, which remain unchanged over the course of the experiment.

Because more information capacity is diverted towards learning about the environment at early

stages of the experiment, our estimates of the cost function give an upper bound on the costs of

processing information rather than a precise estimate.

In a second step, we use the static model to estimate cost parameters separately for the two ses-

sions, while keeping the parameters of decision theory constant across sessions for each participant.

Then, we can test whether and how the parameters characterizing costs of processing information

change between two sessions. This estimation procedure allows us to better estimate the cost func-

tion once convergence has been achieved, to test whether there is a difference in estimates between

the two sessions and check whether this difference is consistent with predictions of our theory.

In a third step, we fix the parameters of the decision theory for each participant and run a

rolling-window estimation of the cost function. This procedure allows us to get a good idea whether

convergence has been achieved, the speed of convergence and its direction.

Note, that the design of the experiment implies a uniform transition function for answers. Thus,

the probability of seeing any option on the left side of the computer screen equals the probability of

seeing it on the right side. This experimental design eliminates any prior bias with respect to answers

in the stationary distribution and validates the use of a uniform prior distribution when estimating
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the static model. Thus, in the empirical part we can also abstract from concerns associated with

possibly inefficient coding of information by participants and its effect on prior bias.

We use our dynamic model prediction that the DM’s prior beliefs about the state variable

and the transition process are updated during the experiment and converge to the true stationary

distribution and true transition process. Combining this prediction with the first-order conditions

in Theorem 1 allows us to simulate the dynamic model starting from different prior biases that then

converge to the true stationary distribution. The data is not rich enough to infer the behavior of

individual beliefs. To generate testable predictions, we apply a rolling-window estimation procedure

both to artificial data generated by the model and to experimental data. Comparison of the two

allows an indirect test of the model’s predictions.
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Figure 3: Monte-Carlo Simulations
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Figure 3 illustrates the results of Monte-Carlo simulations. It shows three paths of rolling-

window estimates of the cost of information (and confidence bounds around them), which differ

only by the speed of convergence. Monte-Carlo simulations show that the changes in beliefs are

captured by the dynamic behavior of rolling-window estimates of information costs. We find that

if artificial beliefs converge monotonically from some initial values toward a uniform distribution,

then the cost estimates decline over time, converging to the true value in the limit. In this case,

the speed of convergence of cost estimates is directly related to the speed of convergence of beliefs.

However, if beliefs fail to converge to the uniform distribution, then no clear dynamic pattern

emerges regarding estimates of information costs. Both predictions of the dynamic model regarding

estimates across sessions and within a session follow directly from our Monte-Carlo exercise.

To test the first dynamic prediction, that acquaintance with the experimental setup lowers the

estimates of information costs, we estimate the parameters of the cost functions separately for the

two sessions. For each individual, we find joint estimates of the parameters allowing either θ̄ or κ̄ to

differ between the two sessions, while treating the rest of the parameters as constants throughout

both sessions. Columns 5 and 6 in each panel of Table 4 report the likelihood ratio test statistics for

the hypotheses that the parameters are equal across two sessions: Hθ
0 : θ̄1 = θ̄2, and Hκ

0 : κ̄1 = κ̄2

respectively. All reported test statistics have a chi-squared distribution with 1 degree of freedom.

Table 4 identifies cases when the null is rejected and the costs are higher (capacity is lower)

in the first session with the § sign. Similarly, cases when the null is rejected and the costs are

lower (capacity is higher) in the first session are marked with the ♣ sign. We find statistically

significant evidence that for 21 participant out of 40, the cost estimates fall in the second session

from the first. For another 15 participants out of 40, we cannot reject the null that costs have not

changed. However, for the majority of these participants, the estimates of costs also fall. For just

four participants out of 40 we find that the estimates of costs increase in the second session from

the first.

We conclude from this result that the vast majority of participants of our experiment acquire

knowledge about the experimental environment in the first session. This knowledge allows them to

be more precise in the second session. Only every tenth participant violates this dynamic prediction

of our theory.

Running rolling-window estimates of costs of information provides a more nuanced way of study-

ing the dynamic behavior of participants. We used rolling windows that include answers to 10
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consecutive repetitions of each question. For each window, we estimate the costs of information ˆ̄θ,

while keeping the estimates of all other parameters fixed at values in Tables 4 and 5. We apply the

rolling window estimation procedure to each session for each participant. For illustrative purposes,

we average the estimates across: 1) all 40 participants of the experiment; 2) the 21 participants that

we identified as “learners”; and 3) the 15 “consistent” participants for which we could not detect

a significant change in cost estimates. The averaged dynamic estimates of costs of information are

shown in Figure 4.

We find that rolling-window estimates of costs of information fall over the course of both sections

for all three groups of participants. The main difference between the two sub-groups seems to be

the speed of convergence. These estimates suggest that participants indeed acquire information

slowly about the experimental environment, as predicted by our dynamic model.

Figure 5 shows for the same groups of participants the average switching rates, i.e. the fre-

quencies with which participants change answers to the same questions over the course of the two

sessions. The switching rates behave very similarly to estimates of costs of information, demon-

strating that as participants learn about the environment over the course of the experiment, their

choices become sharper and more consistent.

Our model provides a unified framework for rationalizing these empirical regularities without

relying on ad hoc assumptions. In particular, we have established three empirical facts. The first

fact is that participants are much more consistent in the second session, which may be several days

after the first one. Our model shows that this is consistent with participants learning something

important about the experiment in the first session. The second fact is that participants remain

highly inconsistent after encountering each pair of gambles more than 50 times. Our model shows

that this observation can be explained by cognitive limitations. The third fact is that participants

remain predictably more consistent on more “valuable” questions. Our model shows that this can

be accounted for by the participants’ choice to vary information capacity in response to incentives.

These three facts are predicted and jointly accounted for by our model.
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6 Conclusion

In this paper we propose a rational inattention model as a microfoundation for stochastic choice.

Our model establishes a mapping between information processing costs and probabilistic choice

distributions and generates various probabilistic choice theories as special cases. The main contri-

bution of the paper is to estimate the shape and size of information processing costs using data

from a unique behavioral experiment.

Our estimates represent the first attempt to measure information costs in the laboratory and

can serve as a benchmark calibration in bounded rationality models. Simultaneously, the estimates

inform the behavioral choice literature on the appropriate selection of error model.

These estimates allow us to discriminate between physical bounds on the decision maker’s cog-

nitive ability and deliberate choice to disregard information. We find that experimental data reject

the hypothesis that errors are driven by physical bounds.

Building on an extension of the model to a repeated setting, we draw two lessons. First, we show

that individuals become less prone to error as they learn from experience. The speed of convergence

is slow and it is worth having a large number of repetitions to obtain unbiased estimates. The second

lesson is that aggregating across individuals is a source of large bias both for the probabilistic choice

model and for the model of risky choice.

We hope that the approach proposed in this paper can be a unifying framework for modeling

bounded rationality in macroeconomics and in behavioral social choice. Understanding whether

stochastic choice is rooted in physical limits or is a result of conscious errors also has important

policy implications. If cognitive mistakes are a result of physical limitations, then no incentive

scheme could reduce them. However, if errors are a result of deliberate disregard of information,

then one could design appropriate ways to motivate agents and guide them toward right decisions.
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(NOT FOR PUBLICATION)

A Appendix: Extensions

A.1 The Dynamic Model

Consider a game (experimental setup) that is composed of questions, denoted by q, and answers

denoted by k.We begin by defining the space of questions as Ωq which contains Q elements and the

set of answers as Ωk containing K elements. We assume that each question q ∈ Ωq can be answered

with each answer k ∈ Ωk. Answers and questions respectively are mutually exclusive. The state

space contains all the combinations of questions and answers and it is denoted by Ω = Ωq × Ωk.

Elements of the state space ω = (q, k) ∈ Ω, represent pairs of potential questions and answers to

them. We shall use ω and (q, k) interchangeably.

We define the state variable g (ωt) of the DM as a probability distribution over all pairs of

questions and answers in period t. The variable g (ωt) represents prior beliefs of the DM about

the probabilities of each combination of a question and an answer occurring in the current period.

These are the beliefs the DM is endowed prior to seeing the computer screen in period t. Thus,

g (ωt) is a function g : Ω −→ [0, 1] characterized by:∑
ωt∈Ω

g (ωt) =
∑
qt∈Ωq

∑
kt∈Ωk

g (qt, kt) = 1, g (ωt) ≥ 0, ∀t.

The stochastic process which governs the realizations of questions and possible answers to them

is assumed to be first-order Markov, with a law of motion characterized by the transition matrix

P (ωt+1|ωt) : Ω × Ω −→ R. Consistent with our experimental setting, we assume that answers

and questions evolve independently from each other with a computer selecting the next question

using a transition matrix r (qt+1|qt) for the questions and ρ (kt+1|kt) for the answers. Thus, the

transition matrix for the system is given by P (ωt+1|ωt) = r (qt+1|qt)~ρ (kt+1|kt) where “~” denotes

Kroenecker product.

Let ω̂ represent the observation of the computer screen by the DM. We assume that the random

variable ω̂ takes a value in Ω. Let the variable p (ωt, ω̃t) be the joint distribution of (ω, ω̂) which is

chosen by the DM at time t. Let h (ωt) =
∑
ω̂t
p (ωt, ω̂t) be the marginal probability distribution
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from which the DM draws her answers at time t. We assume that the DM chooses such a probability

after seeing the computer screen.

The probability of selecting answer k given the last observation ω̂ equals:

s (kt|ω̂t) =
∑
qt∈Ωq

p (qt, kt|ω̂t) . (18)

From the DM’s perspective, the transition function is a function R(ωt+1, ω̂t+1 |ωt, ω̂t) : Ω ×

Ω × Ω × Ω −→ R which maps current values of (ωt, ω̂t) into their future values. The relationship

between R(ωt+1, ω̂t+1 |ωt, ω̂t) and P (ωt+1|ωt) is given by manipulating the joint distribution of

(ωt+1, ω̂t+1|ωt, ω̂t) denoted by M (ωt+1, ω̂t+1, ωt, ω̂t). Let N (ω̂t+1, ω̂t+1|ωt, ωt) be the distribution

of current and future observations (ω̂t+1, ω̂t) conditional on current and future values (ωt+1, ωt) and

note that by Markovianity such a function boils down to N (ω̂t+1, ω̂t+1|ωt, ωt) = f (ω̂t+1|ωt+1) =

p(ωt+1,ω̂t+1)
Σω̂t+1

p(ω̂t+1,ωt+1) . Recall that h (ωt) =
∑
ω̂t
p (ωt, ω̂t). Then the relationship between R (:) and P (:)

is given by:

R (ωt+1, ω̂t+1|ωt, ω̂t) =
f (ω̂t+1|ωt+1) (P (ωt+1|ωt)h (ωt))

p (ωt, ω̃t)

=
f (ω̂t+1|ωt+1)

f (ω̂t|ωt)
P (ωt+1|ωt) (19)

We can cast the DM’s problem into the following Bellman equation:

W (g (ωt) |ω̂t) = max
p(ωt,ω̂t)

∑
ωt∈Ωω

V (ωt|ω̂t) s (kt|ω̂t)− C (κt)

+ β
∑

ωt+1∈Ω

W (gt+1 (ωt+1) |ω̂t+1) R (ωt+1, ω̂t+1|ωt, ω̂t) s (kt|ω̂t) (20)

s.t.

κt = I (p (ωt, ω̂t) , g (ωt)) =
∑
ωt∈Ω

∑
ω̂t∈Ω

p (ωt, ω̂t) log2

p (ωt, ω̂t)

g (ωt)
(21)

gt+1 (ωt+1) =
∑

ω̂t+1∈Ω

∑
ωt∈Ω

R (ωt+1, ω̂t+1|ωt, ω̂t)� p (ωt, ω̂t)

=
∑
ωt∈Ω

(P (ωt+1|ωt)h (ωt))�
∑

ω̂t+1∈Ω

f (ω̂t+1|ωt+1) (22)

p (ωt, ω̂t) ≥ 0
∑
ωt

∑
ω̂t

p (ωt, ω̂t) = 1, ∀t (23)
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The value function in (20) takes up as argument the distribution of the prior g (ωt) in t. The vari-

able p (ωt, ω̂t) is chosen to maximize the current expected value V (ωt|ω̂t) as well as the discounted

continuation value W (gt+1 (ωt+1) |ω̂t) both conditional on having observed ω̂t. The continuation

value depends on the state one period ahead, gt+1 (ωt+1) . We assume that the discount factor is

bounded: β ∈ [0, 1).

The cost of processing information is denoted by C (κt) which is an increasing convex function

of the information processing capacity, κt, whose functional form is described in (21). Note that the

DM’s information-processing capacity, κt, may change as t unfolds. The interpretation of capacity

that varies with t is that people may choose to vary their information-processing needs as their

experience progresses according to the environment they face. For instance, a choice that involves

a large sum of money may call for bigger attention effort than a choice where modest amount of

money is involved.

The law of motion of the state variable in equation (22) is derived using Bayesian conditioning by

convoluting the transition function R (ωt+1, ω̂t+1|ωt, ω̂t) with the choice made by the DM, p (ωt, ω̂t).

The symbol “�” denotes such a convolution. Equations (23) describe the consistency requirement

that the distribution chosen is a proper distribution.

The system (20)-(23) fully characterizes the dynamic problem of the DM. We now turn to

establishing the properties of this dynamic problem and deriving testable predictions from it.

A.1.1 Properties of the Bellman program

The purpose of this subsection is twofold. First, it establishes existence and uniqueness of a solution

to the system (20)-(23) and properties of the solution. Then, it derives the dynamic behavior of

beliefs.

First, note that all the constraints are concave. In fact, all the constraints but (21) are linear

in p (ω, ω̂) and g (ω). For (21), the concavity of the problem with respect to p (ω, ω̂) and g (ω) are

guaranteed by Theorem (16.1.6) of Thomas and Cover (1991).

Next, we prove convexity of the value function and the fact that the value iteration is a con-

traction mapping. The following theorem provides the desired result. All proofs are in Appendix

2.

Theorem A.1

For the system (20)-(23), value recursion H and two given value functions V and U , it holds
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that

||HV −HU || ≤ β ||V − U || ,

with 0 ≤ β < 1 and ||.|| the supreme norm. That is, the value recursion H is a contraction mapping.

Proof. See Appendix B.

The theorem can be explained as follows. The space of value functions defines a vector space

which is closed under addition and scalar scaling and the contraction property ensures this space

to be complete, in the sense that all Cauchy sequences have a limit in this space. The space of

value functions together with the supreme norm form a Banach space and the Banach fixed-point

theorem ensures (a) the existence of a single fixed point and (b) that the value recursion always

converges to this fixed point (see Theorem 6 of Alvarez and Stockey, 1998 and Theorem 6.2.3 of

Puterman, 1994).

The following theorem shows the convexity of the value function in the program (20)-(23):

Theorem A.2 If the utility is bounded and if p (ω, ω̂) satisfies (21)-(23) then the recursion

(20) is convex.

Proof. See Appendix B.

The proof of Theorem 2 shows that the recursion for the program (20)-(23) is convex and can be

represented as a set of |Ω| −dimensional hyperplanes. In the proof, the convex property is given by

the fact that the n−step value function Wn (g) is defined as the supreme of a set of convex (linear)

functions and thus, obtains a convex function as a result. The optimal value function W∗ (g) is the

limit for n that goes to infinity and, since all Wn (g) are convex functions so is W∗ (g) .

A.1.2 Long-run Behavior

We now establish the dynamic behavior of the Markovian processes governing the state variable by

showing the convergence of the distribution h (ωt) =
∑
ω̂t
p (ωt, ω̂t) to g (ω) where ḡ (ω) is defined

as the limiting distribution of the prior g (ωt). We shall proceed in three steps. First we show that

the transition matrix R (:) = R (ωt+1, ω̂t+1|ωt, ω̂t) converges to P , P = P (ωt+1|ωt) and its unique

invariant distribution h (ω) → ḡ (ω). Second, we show that the distance (21) decreases over time.

These results help us with generating testable predictions for the dynamic behavior of the DM.

The first task is concerned with the long-run behavior of the transition matrixes. Let p0 =

p (ω0, ω̂0) be the distribution over Ω from which the initial values (ω0, ω̂0) are drawn and let (ωt, ω̂t)
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be a Markov chain (Ω, p0, R) and define Pr (ωt+l = z, ω̂t+l = x|ωt = i, ω̂t = y) =
(
Rl
)

(z,x,i,y)
as an

element of the matrix R to the power of l. The following result applies:

Lemma 1 The transition function 1
T

∑T−1
t=0 Rt converges as T →∞ to the transition function

P .

Proof. See Appendix B.

This result shows that the variable R, which captures the dynamic beliefs of the DM about the

transition process, converges to the true transition process, P . We use the lemma to prove the

following:

Lemma 2 There exists an invariant distribution. Moreover, any row of P is an invariant

distribution and any invariant distribution is a convex combination of P.

Proof. See Appendix B.

We are still left with the case where multiple invariant distributions may occur. The following

lemma establishes the existence of a unique ergodic set for P .

Lemma 3 There exists a unique ergodic set in Ω, E, for the transition function P.

Proof. See Appendix B.

Applying theorem 11.2 of Stockey, Lucas and Prescott leads us to conclude that, given Lemma

3, R has a unique invariant distribution given by ḡ (ω) . From the previous results, we can state the

following result:

Theorem A.3 The asymptotic distribution of h (ω) =
∑
ω̂ p (ω, ω̂) converges to ḡ (ω).

Proof. See Appendix B.

Next, we turn to the limiting dynamic behavior of (21). The following theorem shows that (21)

decreases over time

Theorem A.4 Let p (ωt, ω̂t) and g (ωt) be two probability distributions of a finite state Markov

chain at time t. Then d (p (ω̂t, ωt) ||g (ωt)) is monotonically decreasing. Moreover, the limit of this

distance is positive:

lim
t→∞

(d (p (ω̂t, ωt) ||g (ωt))) > 0.

Proof. See Appendix B.
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The implication of this theorem is that a decrease of information occurs as statistical equilibrium

is approached. However, the distance between the two distributions does not vanish.

The results in this section make it possible to derive a static version of our problem as a special

case of the dynamic program in (20)-(23). This version is expecially useful if one wishes to compare

our model to the ones proposed in the literature. In fact, statistical models typically lack a dynamic

dimension. As a result, these theories are silent on how people use their knowledge to sharpen future

decisions as well as on the effect their choice of information has on current and future expected

gains.

While the dynamic implications of the model constitute the thrust of this paper, before turning

to the empirical results, we shall briefly discuss the static version of the model in order to ease the

comparison between our rational inattention theory and the models in the literature.

A.2 A static version of the model

Studying the properties of a static version of our rational inattention model allows us to compare

the solution of the decision maker’s problem with existing static probabilistic choice models in the

literature. Our static version of the problem is a special case of the dynamic program (20)-(23)

when the process ωt ∈ Ω is zero-order Markov and when convergence to the stationary distribution

ḡ (ω) has been achieved.

As time progresses, the continuation value in the dynamic problem will eventually stop depend-

ing on previous period’s realizations and the prior carried over will be the same ever since. As a

result, in the static version of the model the choice variable becomes p (ω) = p (q, k) and the model

can be cast into:

max
p(q,k)

∑
k∈Ωk

V (q, k) s (k)− C (κ) (24)

s.t.

κ = I (p (q, k) , ḡ (q, k)) =
∑
q∈Ωq

∑
k∈Ωk

p (q, k) log2

p (q, k)

ḡ (q, k)
(25)

p (q, k) ≥ 0,
∑
q∈Ωq

∑
k∈Ωk

p (q, k) = 1 (26)

where s (k) =
∑
q∈Ωq

p (q, k) in the objective function (24) represents the DM’s chosen choice

probability, observable in our experiment. As before, equation (25) is the mutual information

between the distributions (p (q, k) , g (q, k)) and the constraint (26) limits the choice of the decision
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maker to the space of proper distributions. With a slight abuse of notation, let g (k) =
∑
q∈Ωq

ḡ (q, k)

denote the assymptotic prior distribution over the gambles and let s (k) denote the choice of the

decision-maker. Moreover recall that I (p (q, k) , g (q, k)) = I (s (k)) . This is now exactly the static

problem we study in the main text.

B Appendix: Proofs

B.1 Proof of Theorem 1 in the Main Text

Proof. The problem can be conveniently rewritten into:

max
s(k)

K∑
k=1

V (k) s (k)− C (κ) (27)

s.t.

κ = I (s (k)) =

K∑
k=1

s (k) log2

s (k)

g (k)
(28)

s (k) ≥ 0,

K∑
k=1

s (q, k) = 1 (29)

First, note that information, I (s (k)) is a strictly convex function of the probability distribution

{s (k)}. This follows from the fact that this function is twice differentiable, and its Hessian is a

diagonal matrix which contains only non-negative elements.

Second, since C (κ) is increasing and convex in I (s (k)), convexity of information with respect to

probabilities {s (k)} guarantees that the composite function C (I (s (k))) is also a convex function

of the probability distribution {s (k)}. This in turn implies that the objective function of the

decision-maker is concave in the choice variable {s (k)}.

Maximization of a concave function with respect to a linear constraint with a non-zero gradient

and a set of non-negativity constraints leads to a unique solution satisfying the first-order condition:

V (k)− θ

ln 2

(
ln
s (k)

g (k)
+ 1

)
− λ = 0.

where θ = ∂C(I(s(k)))
∂I(s(k)) is the derivative of the cost function and λ is the Lagrange multiplier associated

with the constraint that probabilities sum up to one. Note that this equation holds for all k ∈ Ωk.

We can combine first-order conditions for any pair of k and k′ ∈ Ωkto obtain:

s (k)

s (k′)
=

g (k)

g (k′)
exp

(
V (k)− V (k′)

θ/ ln 2

)
.
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By further rearranging and summing up over s (k) we obtain the optimal probability (12).

B.2 Proof of Theorem 2 in the Main Text

Proof. Consider a pair of gambles which gives each agent a value differential x ∈ R. Denote

parameter of the gamble pair a = e−x ln 2 > 0 and inverse cost ψi = 1
θi
> 0. According to predictions

of rational inattention theory, the choice probability of agent i over gamble pair x is given by:

yi = 1

1+e
− x ln 2

θi

= 1
1+aψi

.

The representative agent’s choice probability is computed by averaging across agents:

yRA = 1
NΣNi=1yi = 1

NΣNi=1
1

1+aψi
.

Her inverse cost of information is then computed inverting the function:

yRA = 1
1+aψRA

.

Consider the function f (z) = 1
1+az on z > 0. This function is strictly increasing and concave for

a < 1, strictly decreasing and convex for a > 1, equals 1
2 when a = 1. This last case happens only

when when x = 0, when both sides are 1
2 so θRA is undefined. Consider the case a < 1 first. By

Jensen’s inequality for any (unequal) values zj in the domain and for any strictly positive weights

aj a concave function f (z) satisfies:

f
(

Σjajzj
Σjaj

)
>

Σjajf(zj)
Σaj

.

Hence,

1
1+aψRA

= 1
NΣNi=1

1
1+aψi

< 1

1+a
1
N

ΣN
i=1

ψi
.

Since the function f (z) is strictly increasing in z it follows that

1
θRA

< 1
NΣNi=1

1
θi
.

Similarly, when a > 1 the function −f (z) is strictly increasing and concave. Hence,

1
1+aψRA

= 1
NΣNi=1

1
1+aψi

> 1

1+a
1
N

ΣN
i=1

ψi
.

Since the function f (z) is now strictly decreasing in z it again follows that

1
θRA

< 1
NΣNi=1

1
θi
.

Note that the bias disappears only if all agents have identical costs of information (θi = θj) or

when the two options being compared are identical (a→ 1).
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B.3 Proof of Theorem A.1

Proof. Let Γ (ω, ω̂) be the constraint set containing (21)-(23). The H mapping displays:

HW (g) = max
p(ω,ω̂)∈Γ(ω,ω̂)

HpW (g (ω)) ,

with

HpW (g) =
∑
ωt∈Ωω

V (ωt|ω̂t) s (kt|ω̂t)− C (κt)

+ β
∑

ωt+1∈Ω

W (gt+1 (ωt+1) |ω̂t) R (ωt+1, ω̂t+1|ωt, ω̂t) s (kt|ω̂t) .

Assume that ||HW −HU|| is the maximum at point g ≡ g (ω). Let p1 ≡ p1 (ω, ω̂) denote the

optimal control for HW at g and p2 ≡ p2 (ω, ω̂) the optimal one for HU .

HW (g) = Hp1W (g) ,

HU (g) = Hp2U (g) .

Then it holds

||HW (g)−HU (g)|| = Hp1W (g)−Hp2U (g) ,

assuming WLOG that HW (g) ≥ HU (g) . Since p2 maximizes HU at g, it follows that

Hp2U (g) ≥ Hp1U (g) (30)

When we apply the mapping H we have:

||HW −HU|| =

||HW (g)−HU (g)|| =

Hp1W (g)−Hp2U (g) ≤ (31)

Hp1W (g)−Hp1U (g) =

β
∑
ω∈Ωω

∑
ω̂∈Ωω̂

Wp1 (g′|ω̂) p1g − β
∑
ω∈Ωω

∑
ω̂∈Ωω̂

[(Up1 (g′|ω̂))] p1g ≤

β
∑
ω∈Ωω

∑
ω̂∈Ωω̂

(||W − U||) p1g =

β ||W − U||

where the inequality in (31) comes from the fact that we are subtracting less given (30).

Recalling that 0 ≤ β < 1 completes the proof.
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B.4 Proof of Theorem A.2

Proof. The proof is done via induction. We assume that all the operations are well-defined in

their corresponding spaces. As in the previous proof, let Γ (ω, ω̂) be the constraint set containing

(21)-(23). For planning horizon n = 0, we have only to take into account the immediate expected

rewards. Let m (ω̂|ω) be the conditional distribution of ω̂ given ω defined ad m (ω̂|ω) = p(ω,ω̂)
g(ω) .

Then, we can define the contemporaneous reward as:

W0 (g) = max
m(ω̂|ω)∈Γ(ω,ω̂)

[∑
ω∈Ω

V (ω)m (ω̂|ω) g (ω)− C (κ)

]
(32)

and given that the cost function C (κ) is increasing and convex, we can define the vectors

{
αi0 (ω)

}
i
≡

(∑
ω∈Ω

V (ω|ω̂)m (ω̂|ω)

)
m(ω̂|ω)∈Γ(ω,ω̂)

(33)

which leads to the desired

W0 (g) = max
{αi0(ω)}

i

〈
αi0, g

〉
(34)

where 〈., .〉 denotes the inner product
〈
αi0, g

〉
≡
∑
ω∈Ω

αi0 (ω) , g (ω).For the general case, :

Wn (g) = max
m(ω̂|ω)∈Γ(ω,ω̂)


∑
ω∈Ω

V (ω|ω̂)m (ω̂|ω) g (ω)− C (κ) +

+β
∑

ω,ω′∈Ω

∑
ω̂,ω̂′∈Ω

W (g′ (ω′) |ω̂) R (ω′, ω̂′|ω, ω̂)m (ω̂|ω) g (ω)

 (35)

by the induction hypothesis

Wn−1 (g (·)|ω̂) = max
{αin−1}i

〈
αin−1, g

′
ω̂ (·)

〉
(36)

Plugging into the above equation and by definition of 〈., .〉 ,

Wn−1 (g′ω̂ (·)) = max
{αin−1}i

∑
ω,ω′∈Ω

∑
ω̂,ω̂′∈Ω

αin−1 (g (ω′))

(
R (ω′, ω̂′|ω, ω̂)

p (ω, ω̂)

f (ω̂)

)
(37)

where f (ω̂) is the marginal distribution of ω̂.
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With the above:

Wn (g) = max
m∈Γ


∑
ω∈Ωω

V (ω|ω̂)m (ω̂|ω) g (ω)− C (κ) +

+β max
{αin−1}i

∑
ω̂∈Ω

1
f(ω̂)

∑
ω,ω′∈Ω

∑
ω̂′∈Ω

αin−1 (ω′) (R (ω′, ω̂′|ω, ω̂)m (ω̂|ω)) g (ω)


= max

m∈Γ

[
〈V ·m, g (ω)〉 − C (κ) + β

∑
ω̂∈Ω

1

f (ω̂)
max
{αin−1}i

〈∑
ω′∈Ω

αin−1 (w′) R (ω′, ω̂′|ω, ω̂) ·m, g

〉]
(38)

At this point, it is possible to define

αjm,ω̂ (ω) =
∑
ω′∈Ω

αin−1 (ω′) R (ω′, ω̂′|ω, ω̂) ·m. (39)

Note that these hyperplanes are independent on the prior g for which the value function Vn is

computed. Thus, the value function amounts to

Wn (g) = max
m∈Γ

〈V ·m, g〉+ β
∑
ω̂∈Ω

1

f (ω̂)
max
{αjm,ω̂}j

〈
αjm,ω̂, g

〉 , (40)

and define:

αm,ω̂,g = arg max
{αjm,ω̂}j

〈
αjm,ω̂, g

〉
. (41)

Note that αm,ω̂,g is a subset of αjm,ω̂ and using this subset results into

Wn (g) = max
m∈Γ

[
〈V ·m, g〉+ β

∑
ω̂∈Ω

1

f (ω̂)
〈αm,ω̂,g, g〉

]

= max
m∈Γ

〈
V ·m+ β

∑
ω̂∈Ω

1

f (ω̂)
αm,ω̂,g, g

〉
. (42)

Now {
αin
}
i

=
⋃
∀g

{
V ·m+ β

∑
ω̂∈Ω

1

f (ω̂)
αm,ω̂,g

}
m∈Γ

(43)

is a finite set of linear functions parametrized in the action set.

The final step entails the proof that the
{
αin
}
i

sets are finite and discrete for all n. The finite

cardinatility of these sets is an important step since it proves that we can represent Wn (g) with a

finite set of supporting α−functions. Again, we proceed via induction. For discrete actions,
{
αiω̂
}
i

is discrete from its definition in (36). For the general case, we have to observe that for discrete
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actions and observation ω̂ and assuming M =
∣∣∣{αjn−1

}
i

∣∣∣, the sets
{
αim,ω̂

}
i

are finite and discrete:

for a given action m and observation ω̂ we can generate at most M αjm,ω̂ functions. Note that fixing

the action, we can select one of the M αjp,0 functions for each one of the observation and, thus, the{
αin
}
i

set is of finite cardinality.

B.5 Proof of Lemma 1

Proof. We need to evaluate limt→∞

(
f(ω̂t+1|ωt+1)(P (ωt+1|ωt)h(ωt))

p(ωt,ω̃t)

)
. Given that the optimal distri-

bution is ergodic, letting t → ∞ leads to p (ωt, ω̃t) = p (ωt+1, ω̃t+1) = p (ω, ω̃), h (ωt) = h (ωt+1) =

h (ω) and P (ωt+1|ωt) = P . Then:

lim
t→∞

(
f (ω̂t+1|ωt+1)h (ωt)

p (ωt, ω̃t)
(P (ωt+1|ωt))

)
=

(
f (ω̂|ω)

f (ω̂|ω)
P

)
= P

B.6 Proof of Lemma 2

Proof. From the previous lemma, we know that 1
T

∑T−1
t=0 Rt → P and that PR = P. Writing the

equality of these matrixes as the equlity of the row vetors, we have p−s = [pω1 , .., pωΩ ] = pω ×R, so

each row pω is an invariant distribution. Moreover, an invariant distribution ḡ (ω) satisfies

∀n : ḡ (ω) =
∑
i∈Ω

(
1

T

T−1∑
t=0

Rt

)
(i, ω) ḡ (i)→

∑
i∈Ω

P (i, ω) ḡ (ω)

B.7 Proof of Lemma 3

Proof. Let us suppose that E and E∗ are two ergodic sets for the transition function P. Proving

that there exists a subset a ∈ E ∩ E∗ such that ḡ (a) > 0, then E and E∗ are not distinct ergodic

sets. That is, if P (a, E) = 1 and P (a, E∗) = 1, then E is equal to E∗. Since there is a positive

probability of asking question ω1 ∈ Ω in the experiment, g (ω1) > 0. If E is an ergodic set in Ω,

then P (ω1, E) = 1 which implies ω1 ∈ E . If E∗ were another ergodic set of Ω, we would get ω1 ∈ E∗

using the same argument. Thus, ω1 ∈ E ∩ E∗.
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B.8 Proof of Theorem A.3

Proof. Combining the fact that the long-run transition function R (:) converges to P (Lemma 1)

and R (:) has a unique invariant distribution (Lemma 3 and Theorem 11.2 of Lucas, Stockey and

Prescott), it follows that h (ω) =
∑
ω̂ p (ω, ω̂) eventually converges to the steady state distribution,

ḡ (ω).

B.9 Proof of Theorem A.4

Proof. Let ψ (ωt, ωt+1) denote the joint distribution of ωt and ωt+1 under the prior, i.e., ψ (ωt, ωt+1) =

g (ωt)P (ωt+1|ωt) and let υ (ω̂t+1, ω̂t, ωt+1, ωt+1) = p (ω̂t, ωt) (R (ωt+1, ω̂t+1|ωt, ω̂t)) be the corre-

sponding joint probability under the distribution selected by the decision maker. The chain rule

for relative entropy implies

d (υ (ω̂t+1, ω̂t, ωt+1, ωt+1) ||ψ (ωt, ωt+1))

(a)
= d (p (ω̂t, ωt) ||g (ωt)) + d (R (ωt+1, ω̂t+1|ωt, ω̂t) ||P (ωt+1|ωt))
b
= d (p (ω̂t+1, ωt+1) ||g (ωt+1)) + d (R (ωt, ω̂t|ωt+1, ω̂t+1) ||P (ωt|ωt+1)) (44)

where (a) comes from the chain rule for entropy and (b) comes from the time symmetry of the

Markov process.

The conditional probability distributions are given by: p (ω̂t+1, ωt+1|ω̂t, ωt) = (R (ωt+1, ω̂t+1|ωt, ω̂t)) =

h(ωt)f(ω̂t+1|ωt+1)
p(ωt,ω̃t)

P (ωt+1|ωt) = f(ω̂t+1|ωt+1)
f(ω̃t|ωt) P (ωt+1|ωt) and g (ωt+1|ωt) = P (ωt+1|ωt). Using the

non-negativity of d (R (ωt, ω̂t|ωt+1, ω̂t+1) ||P (ωt|ωt+1)) from Corollary to Theorem 2.6.3 in Cover

and Thomas, it has to be the case that:

d (p (ω̂t, ωt) ||g (ωt)) ≥ d (p (ωt+1, ω̂t+1) ||g (ωt+1)) (45)

and consequently the distance between these two probability functions is decreasing in time.

Note that as time progresses limt→∞
1
t

(
f(ω̂t+1|ωt+1)
f(ω̃t|ωt)

)
= limt→∞

1
t

(
f(ω̂t|ωt)
f(ω̃|ω)

)
= 1 and thus

limt→∞
1
t d
((

f(ω̂t+1|ωt+1)
f(ω̃t|ωt) P (ωt+1|ωt) ||P (ωt+1|ωt)

))
= 0.

This implies that the quantity d (R (ωt+1, ω̂t+1|ωt, ω̂t) ||P (ωt+1|ωt)) vanishes over time.

Let us focus now on the limiting distributions. If we let ḡ (ωt) be any stationary distribution,

the sequence d (p (ω̂t, ωt) |ḡ (ωt)) is a monotonically non-increasing non-negative sequence and must

therefore have a non-negative limit. Note that this limit is non-zero since we can further decompose
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p (ωt, ω̂t) = h (ωt)m (ωt|ω̂t) and by Theorem 3 we know that limt→∞
1
t (h (ωt)) = ḡ0 (ωt) = g0

implying that limt→∞ (d (h (ωt) ||ḡ0 (ωt))) = limt→∞ (d (h (ωt+1) ||ḡ0 (ωt+1))) = 0. Then, by the

definition of relative entropy:

d (p (ω̂t, ωt) ||ḡ0 (ωt)) =
∑
ω

∑
ω̂

p (ωt, ω̂t) log

(
p (ωt, ω̂t)

ḡ0 (ωt)

)
= −

∑
ω

∑
ω̂

h (ωt)m (ωt|ω̂t) log

(
ḡ0 (ωt)

h (ωt)m (ωt|ω̂t)

)
= −

∑
ω

∑
ω̂

h (ωt)m (ωt|ω̂t)
[
log

(
ḡ0 (ωt)

h (ωt)

)
+ log

(
1

m (ωt|ω̂t)

)]
Let m̄ (ω|ω̂) denote the stationary distribution of m (ωt|ω̂t). Then, taking the limt→∞ for the above

expression results into:

lim
t→∞

(d (p (ω̂t, ωt) |g0))→ −

[∑
ω

∑
ω̂

ḡ0 (ω) m̄ (ω|ω̂) log

(
1

m̄ (ω|ω̂)

)]

(c)
> log

(∑
ω

ḡ0 (ω)

)
= 0

where (c) follows from Jensen’s inequality and the inequality is strict since m̄ (ω|ω̂) = p(ω,ω̂)
ḡ0(ω) 6=

ḡ0 (ω).

C Appendix: Coding, knowledge, models of heuristics and

coalescing

Our model based on rational inattention theory focuses on a decision maker’s ability to act in an

uncertain environment with limited processing capacity. Our model postulates that the decision

maker, aware of her limited processing capacity, selects the information structure that conveys the

highest utility. As a result, our model predicts that a rationally inattentive decision maker optimally

chooses the amount of uncertainty that he is willing to tolerate by evaluating costs and benefits of

processing information. This subsection makes four observations on the rational inattention model

we proposed.

First, one important assumption of our model is that the only source of uncertainty faced by

the decision maker is in the distribution of options (“states of the world”). We do not address any

form of cognitive bias that might emerge from presenting the options as made of different numbers
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of branches (e.g. three instead of two) or of different probability representations (e.g. pie charts

as opposite to percentages). These cognitive biases are treated in Shannon’s information theory

as coding and decoding problems. As the example in the previous subsection makes clear, the

way options are presented is one potential source of inefficient coding. That is, when evaluating

the capacity of a channel -human brain, in our case-, a prominent branch of information theory is

concerned about the optimal design and compression of inputs and outputs of the channel. Albeit

we recognize that such a cognitive bias may be sizeable in experimental studies, we choose not to

model this bias explicitly. In the main body of the paper we assume that the coding is always

efficient.

Second, we want to highlight the difference between information and knowledge in our model.

Some studies have interpreted information as equivalent to knowledge. For instance, Gigerenzer

and Goldstein (2011) describe recognition and evaluation as the two processes that constitute

information use for decision making. They describe recognition as the process of accessing memory,

-i.e., previous knowledge-, and evaluation as the process of comparing choice options to objects

in the knowledge base. The decision maker does not acquire new information or produce new

knowledge when using this heuristic process. In our model, recognition corresponds to the prior of

the participant about the gamble she faces. Before processing any information, this prior knowledge

is measured by the uncertainty (or entropy) of the gambles. Then, evaluation corresponds to

processing information about the gambles in order to reduce uncertainty. Thus, in our model,

evaluation is the process of acquiring information and forming new knowledge.

Third, we want to emphasize the difference between rational inattention models and models of

heuristics as advocated by, inter alia, Cokely, Schooler and Gigerenzer (2010), as well as models

based on Decision Field Theory, as advocated by Busemeyer and Townsend (1993). The reason why

we use rational inattention theory to describe people’s behavior is due to the fact that its statistical

foundations make the model general and universally applicable. So long as we can characterize

the distribution of the state variables, we can measure ex-ante uncertainty. So long as we can

postulate a decision theory, we can predict and measure the optimal reduction of uncertainty of the

decision maker. We are concerned about the ability of the model to produce predictions consistent

with observed behavior. We do not take a stand on whether this modeling strategy replicates the

cognitive process that occurs in people’s brains when they make decisions. This area of research

goes beyond the scope of our paper.
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Forth, we want to address the relationship between the information processing constraint and

experimental design, with particualr emphasis on the phenomenon of coalescing. In Section 3, we

pointed out that the technological constraint is independent of the objective probabilities pjk and

the J possible outcomes since by assumption the decision maker cannot influence the experimental

set-up of the gambles proposed: she can only choose which gamble to pick. A word of caution is

in order here. While experiment participants take the format of the game as given, the experiment

designer needs to be mindful of the way the gambles are set-up.

Experimental evidence15 suggests that varying the number of possible outcomes per gamble

influences the decision-maker’s choice. To make the discussion concrete, we illustrate the point

with the following example:

Example 1 [Birnbaum (2008)]Consider gamble A presented as follows

A : X1 .1 probability to win $100

X2 .1 probability to win $100

Y2 .8 probability to win $10

and define p (X1) = px1
= 0.1, p (X2) = px2

= 0.1and p (Y2) = p2 = .8. Now consider gamble A’

where (X1, X2) have been combined as follows

A′ : Y1 .2 probability to win $100

Y2 .8 probability to win $10

Gamble A′ is defined as the coalesced form of gamble A. Birbaum (2008) finds that people

choose differently if presented with gamble A compared to their choice if presented with gamble

A′. Rational inattention based Shannon’s information theory suggests that the transformation of

gamble A into gamble A′is not entropy-neutral, i.e., the uncertainty intrisic to gamble A is different

from that of gamble A′ since the event space in gamble A′ is coarser than that in gamble A. Thus,

the decision-maker’s choice when presented with gamble A and gamble A′ would encompass the

difference in costs per bit involved in processing information about gamble A and gamble A′. The

following lemma formalize the statement.

15See, e.g., Birnbaum (2003).
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Lemma 4 Given a partition α = [X1, X2, Y2] we form the partition β = [Y1, Y2] obtained by

merging (X1, X2) into Y1 where p (X1) = px1
and p (X2) = px2

and pi = P (Yi) . Then

H (β) ≤ H (α) (46)

Proof. The function ϕ (p) = −p log p is convex. Therefore for λ > 0 and p1−λ < p1 < p2 < p2 +λ

we have that

ϕ (p1 + p2) < ϕ (p1 − λ) + ϕ (p2 + λ) < ϕ (p1) + ϕ (p2)

Then,

H (α)− ϕ (px1)− ϕ (px2) = H (β)− ϕ (px1 + px2) (47)

because each side equals the contribution to H (α) and H (β) respectively due to the common

elements of α and β. Hence, (46) follows from (47).

Transforming the event space α into β implies moving probability mass from a state with low

probability to a state with high probability. Whenever this move occurs, the system becomes less

uniform and thus entropy decreases. This is the case for the example offered by Birnbaum (2008).

Example 2 [Birnbaum (2008) con’t.]The entropy of the gamble A is larger than the entropy of

gamble A’:

H (A) = 0.92 > 0.72 = H (A′) .

Thus, the first gamble has more uncertainty than the second gamble and thus requires higher capacity

to be processed.
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