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1 Introduction

A recurring feature of business activity in the U.S. economy is the asymmetry between

slow expansions and fast contractions.1 We document three main features of the U.S.

business cycle that motivate our theory. First, real GDP shows a negative growth

asymmetry with the decline occuring faster than recovery. Second, markups show the

opposite asymmetry: they rise steeply following recessions and fall gradually in ex-

pansions. Finally, �rms�exit rates are strongly countercyclical and spike in recessions.

Taken together, these features suggest a link between the asymmetry of business cycles,

markups and �rms�exit decisions.

These business cycle asymmetries seem to be closely connected with asymmetries in

information rigidities over the business cycle. As shown by Coibion and Gorodnichenko

(2015, 2012), information rigidities slowly rise in expansions and drop abruptly in the

aftermath of recessions.

In this paper we provide a theoretical framework based on the rational inattention

theory of Sims (2006) that reconciles these facts. The paper�s main contribution is

to show theoretically that rationally inattentive decisions of entrepreneurs to keep

producing or exit the market may be an important source of business cycle asymmetry

and that information frictions may play a role in the business cycle by amplifying these

asymmetries.

Our model is built on the idea that entrepreneurs have limited cognitive ability

to process all available information about the markets in which they operate. This

information involves both economywide markup and demand for their business�s out-

put. Firms choose signals to monitor market conditions. Based on these signals, they

decide whether to exit. Entrepreneurs�choice of signals in�uences their perception of

1According to the NBER�s business cycle dating committee, since 1900 the average length of

expansions (11 quarters) has been three times longer than the average length of contractions (3.6

quarters).
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market conditions and, in turn, their exit decisions. Individual exit decisions a¤ect

the number of market participants and through competitive pressure the economywide

markup. Thus, individuals�information-processing choices a¤ect aggregate outcomes.

However, information choices are in�uenced by aggregate markups as well. When

the economy is in an expansion and markups are slowly declining, �rms choose to

process little information and delay exit. The presence of slim markups and many

�rms that are no longer pro�table in the economy leads to a recession during which a

lot of �rms exit the market simultaneously. In the aftermath of the recession, markups

rise sharply and so does the attention of the incumbent �rms. The model predicts

lagged, counter-cyclical and positively skewed markups.

Information frictions based on rational inattention theory are the source of an endo-

genous skew in our model. Di¤erent from other information-based theories, rational in-

attention postulates a cost of processing information about economic conditions whose

nature is cognitive. There are no frictions preventing �rms from knowing their eco-

nomic environment other than the information they are capable of processing. This

friction is modelled as a �xed marginal cost of processing information associated with a

Shannon�s channel. The latter regulates the informativeness of signals about economic

conditions that a �rm chooses. The more information the signal contains, the greater

the overall cognitive cost the �rm incurs to process it. The key mechanism of the model

exploits the fact that a �rm�s attention varies with the value of information relative

to its cost. In economic expansions, when economywide markups are low, the bene�t

of choosing precise signals is low and �rms optimally choose relatively uninformative

signals. In economic contractions, when economy-wide markups are high, �rms �nd

it optimal to process progressively more information as the bene�t of being relatively

well informed is high.

The speci�cation of the cognitive nature of the attention cost together with the en-

dogenously varying amount of attention is at the core of our model. This speci�cation is
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strongly supported by experimental evidence in economics, psychology and neurology.2

Our model also uncovers a novel mechanism through which information frictions a¤ect

the business cycle. This mechanism is at the core of the prediction that the amount

of attention to economic conditions and the precision of forecasts increase sharply in

recessions and fall slowly in expansions. Empirical studies of information rigidities

support this prediction. Coibion and Gorodnichenko (2012, 2015) �nd that economic

agents process more information about macroeconomic conditions in the aftermath of

a recession rather than at its onset.

Moreover, our model has the potential to explain asymmetries in macroeconomic

variables such as GDP, markups, �rm entry and exit. Two main caveats are in order

here. The �rst concerns the computational strategy, the second the noisy nature of the

data on markups in the U.S.

Using a rational inattention model implies solving a problem where the state vari-

able, its evolution and the choice variable are all distributions. This computational

complexity limits the number of �rms we can analyze. However, evidence on the U.S.

�rm size distribution shows that it has fat tails, corroborating the modeling assumption

of a �nite set of �rms. Moreover, we show that the granularity of the U.S. economy,

as documented by Gabaix (2011) allows us to meaningfully capture the skewness of

individual perceptions of shocks and to relate it to the observed asymmetric aggregate

outcomes.

Unfortunately, the data on markups for the U.S. are extremely noisy and many

of their properties are very sensitive to background assumptions and data revisions.

Thus, we leave a thorough quantitative comparison of the model�s outcomes with U.S.

empirical evidence for future research.

In a series of recent papers, Coibion and Gorodnichenko (2015, 2012) have pointed

out that information rigidities vary along the business cycle. They document that

2For experimental evidence on rational inattention, see Woodford (2013), Cheremukhin, Popova

and Tutino (2015).
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information rigidities have asymmetric dynamics: they rise when the economy is in an

expansion and drop in the aftermath of a recession. The authors further show that

the degree of information rigidity is large and economically signi�cant across time and

countries for �rms and households alike.

Despite its importance, leading models of information frictions such as noisy-information

and sticky-information fail to reconcile these dynamics of information rigidities. The

rationale for this failure hinges upon the fact that these models postulate agents up-

dating information about aggregate economic conditions infrequently. Without explicit

consideration for reasons why �rms may want to process information and allocate at-

tention di¤erently along their life cycle, these models cannot rationalize how the degree

of information rigidities varies along the business cycle.

A prominent exception is Gorodnichenko (2008) which builds a model with state-

dependent information acquisition where the degree of attention varies according to the

volatility of macroeconomic conditions. In this paper we propose a novel mechanism

through which �rms have an incentive to acquire more information during and in the

immediate aftermath of recessions and less information in expansionary periods. In

our model, not only overall macroeconomic volatility, but also individual incentives,

such as �rm-speci�c markups, in�uence the decision of a �rm to acquire information.

By microfounding �rms�acquisition and processing of information, we reconcile the

business cycle asymmetries of markups, exit and entry and connect them to business

cycle variation in information acquisition by �rms, as documented by Coibion and

Gorodnichenko (2015).

The way information aggregation works in our model is related to models of pure

information externality. In the literature,3 aggregation of information dispersed across

many �rms results in swift rushes of exits. Learning about the optimal stopping time

of others is the key mechanism through which information is dispersed across the

3See, inter alia, Chamley and Gale (1994) and its extension by Murto and Valimaki (2011).
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population. Much like Murto and Valimaki (2011), our model predicts exit waves due

to information aggregation. However, in our framework the mechanism through which

learning occurs comes from endogenous �rms�choices of information structure.

The paper contributes to three strands of literature. First, we contribute to the

literature aimed at explaining business cycle asymmetries.4 Unlike most previous stud-

ies, the key element of our model is �rms�endogenous choice of information structure

implied by the presence of cognitive costs and its in�uence on exit decisions.

Second, we contribute to the literature studying the e¤ects that information pro-

cessing and belief formation have on aggregate �uctuations5 and coordination in the

presence of externalities.6 Unlike models of coordination games, our model explicitly

maps �rms�perceptions of the state of the economy into exit decisions through choice

of information structure. In this respect, the paper closely relates to the rational

inattention framework proposed by Sims (2006).7

Finally, our mechanism generates counter-cyclical variations in pro�t margins.8 Un-

like the mechanisms described in the literature, most of the business cycle adjustment

in our model occurs on the exit (rather than entry) margin. This is consistent with

evidence on the behavior of establishment entry and exit rates in the U.S. economy,

4See Shleifer (1986), Zeira (1994), Matsuyama (1999), Francois and Lloyd-Ellis (2003) for examples

of variations in monopoly power under uncertainty and McKay and Reis (2008) and Abbritti and Fahr

(2013) for asymmetries of wages, price and output over the business cycle. For asymmetries related

to information, see Jovanovic (2006) and Van Nieuwerburgh and Veldkamp (2006).
5See, e.g., Mankiw and Reis (2002) and Lorenzoni (2009).
6See Angeletos and Pavan (2007), Hellwig and Veldkamp (2009), Myatt and Wallace (2012).
7Unlike Mackowiak and Wiederholt (2009), who apply this framework to analyze price stickiness,

we do not rely on Gaussian distributions. Instead, the optimal joint distribution of attention is fully

endogenous. This approach has already proven useful in Tutino (2013)�s analysis of asymmetries in

consumption-savings decisions.
8The idea of competitive wars was introduced by Rotemberg and Saloner (1986). Bilbiie, Ghironi

and Melitz (2012) relate variations in markups to endogenous variations in entry and product variety,

while Edmond and Veldkamp (2009) analyze the interplay of variations in the degree of heterogeneity

and counter-cyclical markups.
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which this paper summarizes.

The paper is organized as follows. In Section 2 we describe the primitives of the

model together with the information structure and clarify the nature of the attention

cost. We complete the section by stating the problem of the �rm. Section 3 illustrates

the mechanism of the theoretical model and its predictions. We test these predictions

against US data and against evidence presented by Coibion and Gorodnichenko (2012,

2015). We conclude the section by discussing sensitivity of our �ndings to the core

modelling assumptions. Section 4 discusses potential policy implications of our business

cycle mechanism. Appendices 1-7 contain additional details.

2 Theoretical Framework

In this section, we construct the simplest possible economy where variations in the

number of �rms in the market induce an aggregate demand externality. As we shall

see in our model, variations in the number of �rms are determined by �rms�decisions

to exit conditional on their endogenous choice of information. Entry is exogenous.9

Our model economy could be thought of as a single sector version of the economy

described in Jaimovich (2007). The main di¤erence comes from our focus on modeling

separately the entry and exit decisions of �rms. We replace the assumption that the

number of �rms is a jump variable determined by a zero pro�t condition with a setup

where incumbent �rms can choose whether to exit the market. For simplicity, we

disregard capital as a factor of production. In our economy the stock of available

production capacity is a counterpart of capital. We show in Appendix 1 that this setup

is equivalent to a setup with imperfect substitution between goods in the presence of

�xed costs.

Thus, apart from the determination of the number of �rms, our economy is an

exact counterpart of the economy analyzed by Jaimovich (2007) for the case when the

9We defer to section 3.4 for a discussion of sensitivity of the results to this assumption.
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parameter of capital share approaches 0, the parameter of the elasticity of substitution

equals 1, the parameter of the elasticity of labor supply equals 0, and there is a single

representative sector in the economy. This case satis�es the su¢ cient condition for

existence and uniqueness of a steady-state and the necessary condition for multiple

equilibria.

2.1 Primitives

Time is discrete and continues forever, t = 1; ::;1. In each time period, the model

economy consists of a representative household and Kt �rms. We denote each �rm

with the subscript i, where i = 1; :::; Kt: Firm pro�t, denoted by �it; is derived from

producing and selling di¤erentiated product qit at price pit net of the wage bill, wt: For

simplicity, we assume that there are no strategic interactions across �rms.

Firm i�s pro�t function amounts to:

�it = pitqit � wtlit: (1)

Firms use identical production functions, which are linear in labor inputs, lit, and

have a capacity constraint:

qit = Alit � A; (2)

where A is total production capacity. Within each period, �rms either operate at full

capacity, or do not operate.

The representative household trades o¤ leisure for consumption, maximizing a

standard utility function:

1X
t=0

�t
�
C1�t � 1
1�  � Lt

�
; (3)

with respect to the supply of labor, Lt, and a consumption aggregator, Ct. In (3), 
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denotes the coe¢ cient of relative risk aversion. The consumption aggregator weights

di¤erentiated products, qit, by their tastes, vit:

Ct =
KtX
i=1

vitqit: (4)

The household owns all the �rms in the economy. It spends wage and pro�t income

on contemporaneous consumption, maximizing utility subject to a budget constraint:

KtX
i=1

pitqit = wtLt +
KtX
i=1

�it: (5)

Maximization yields the following �rst-order condition, which determines the de-

mand curve for each good indexed by i:

pit = wtC
�
t vit; (6)

which is driven by variations in idiosyncratic tastes vit: Variations in tastes are the

only source of uncertainty in the economy.

Prices in the economy are determined according to a Walrasian equilibrium among

the incumbent �rms in period t.10 We de�ne a consumption price index as follows:11

Pt =
1

Ct

KtX
i=1

pitqit = wtC
�
t : (7)

Let the wage, wt; be the numeraire. The expression for �rms�pro�ts then simpli�es

to:

�it = �t+1vit � 1; (8)

10We postulate that prices are set by an intermediary whose sole purpose is to acknowledge vit and

set the price accordingly. Pro�ts resulting from sales of the products are passed onto the �rm. We

discuss implications of alternative assumptions in Section 3.

11To obtain (7), we start from the de�nition of the price index, PtCt =
XK

i=1
pitqit. Substituting

(6) into this de�nition and using (4) yield the desired result. More details are in Appendix 1.
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where the markup, �t+1 characterizes the aggregate state of the economy:

�t+1 = APt = A
1�

 
KtX
i=1

vit

!�
: (9)

We will explain the t+1 subscript on the markup � when we discuss the timing of

the model. For now, we shall note that even ruling out strategic interactions among

�rms, eq. (9) makes clear that changes in the number of �rms (Kt) and consumer

tastes (vit) a¤ect the market through their impact on the degree of competition. As a

result, they generate a negative demand externality for the incumbent �rms.

For tractability we abstract from endogenous variations in the entry margin and

focus on the exit decision.12 We assume that on average � new �rms arrive every period.

Because this number may not be round, we assume that the number of entrants, k, is

drawn from a Poisson distribution with parameter �:

f (k; �) =
�ke��

k!
: (10)

New entrants receive the highest possible value of taste of 1. During the life of a

�rm the evolution of taste, vi;t, for its product is described by the following curvature

function and transition rule:

vit = e
�gxit ; (11)

xitjxit�1 =
�
xit�1 +�;

U [0; �x] ;

1� '
'

; (12)

where g is a scale parameter and xit denotes the distance of �rm i from the frontier.

Figure 1 illustrates a typical path of vit.

12We discuss alternative assumptions about entry and their implications in Section 3.

10



Figure 1. Sample path of vit.

As new �rms enter the market, the distance, xit, of an existing �rm from the frontier

increases with a drift parameter, �, which is related to the number of entrants, �,

through the entry rate, s:

s =
�

�x
=
�
�K
; (13)

where �K denotes the average number of �rms. The transition rule in equation (12)

captures the idea that entry of � new products makes older products less desirable,

shifting down consumers� relative taste for them by �. To make the distribution

stationary, we assume that each �rm can innovate with probability ', in which case

the taste for the product is drawn from a uniform distribution. Parameter 1 � ' is

related to the persistence of idiosyncratic tastes.

We assume that incumbent �rms decide whether to exit or stay in each period. If

a �rm stays, it produces according to (2) to satisfy the demand for its product and

obtains pro�ts (8). If a �rm exits, the �rm never reenters the market and receives a

continuation value of zero. The timing of events is as follows: 1) new entrants arrive;

2) nature determines tastes; fvit; i = 1; :::; Ktg; 3) �rms process information and form

beliefs; 4) based on this information each �rm decides whether to stay in the market

or exit; 5) the combination of exit decisions determines aggregate variables and pro�ts
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of individual �rms in general equilibrium according to equation (9).

This timing implies that exit decisions are made simultaneously by various �rms,

so the choices of others are not yet known when a �rm makes its own exit decision.

Because of this timing structure, last period�s markup, �t, is the contemporaneous

aggregate state of the economy.

Let eit 2 (f0g ; f1g) denote the exit decision of �rm i in period t. Each �rm

maximizes the expected discounted pro�ts by choosing whether to exit (eit = 1) or

stay (eit = 0). Firms base their decisions on the information available to them. The

information structure of incumbent �rms is the central element of this model. We turn

to it next.

2.2 Information structure

In this subsection, we contrast the outcome of the incumbent �rm�s problem under full

information with the outcome of the problem where incumbent �rms face information-

processing constraints. The way in which �rms acquire and process information has a

non-trivial e¤ect on the aggregate behavior of the model.

We use as a benchmark the model with full information. Under full information,

at time t an incumbent �rm i observes the taste for its own product, vit, as well as

tastes for all the products o¤ered in the market, vjt, j 6= i, and the number of �rms

competing in the market at period t � 1. Note that, for given A, knowledge of the

number of competitors and demand conditions implies knowledge of �t from eq. (9).

Note also, that by assuming away strategic interactions we remove the need for �rms

to track contemporaneous tastes for competitors� products. Let Sit = fvit; �tg be

the vector of states that determines an incumbent �rm�s decision to exit at time t;

eit (Sit) : We assume that incumbent �rms know the law of motion of Sit; denoted by

T (Sit+1jSit).

We characterize the solution of the full information problem via value iteration of
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the following Bellman equation:

Vit (Sit) = max
eit(Si)

fEt [�it + �Vt+1 (Sit+1) jSit] ; 0g : (14)

The outcome of the full information model is characterized by mild symmetric �uctu-

ations in the number of �rms operating each period.13 This �nding is due to �rms�

knowledge of demand conditions (their own as well as their competitors�), which is used

to optimally time their exit. Thus, the full information outcome produces symmetric

business-cycle �uctuations that are at odds with the properties of business cycles in

the U.S. economy.

To better account for these, we propose a model with information frictions based on

rational inattention theory (Sims 2003, 2006). We �nd that the outcome of the model

with rationally inattentive �rms much better �ts the evidence on the asymmetry of

exit rates and markups over the business cycle.

Before turning to the formal statement of the rational inattention model in Section

2.4, we describe in Section 2.3 the nature and structure of the information-processing

costs under rational inattention. In the same section we argue on the plausibility of

our cost speci�cation with respect to other models of information frictions.

2.3 Nature and structure of the attention cost: cognitive cost

and elastic capacity

Suppose an economic environment can be described by the joint behavior of two

stochastic processes: an idiosyncratic variable, vit, re�ecting a �rm�s own demand

conditions, and an aggregate variable, �t; re�ecting market tightness. This environ-

ment can be summarized by a state variable Sit = fvit; �tg in period t. Consider a �rm
13The full-information economy exhibits aggregate �uctuations simply because the number of �rms

is �nite and idiosyncratic shocks do not wash away. See Appendix 3 for a comparison between the

predictions of the full information model and those of the rational inattention model.

13



that needs to track Sit to time its exit. It has a prior belief on Sit de�ned as the distri-

bution gt (Sit) : The �rm maps information about the state variable into exit decisions

according to a deterministic rule.14 It chooses to keep operating, ei (gt (Sit)) = 0, if its

expected pro�ts, Et�t, exceed a threshold ��, otherwise it shuts down. Under rational

inattention theory, the �rm has a limited time and attention span to track Sit precisely.

Aware of its limits, the �rm chooses the joint distribution of the state of the economy

Sit and beliefs about its pro�ts �it, de�ned as p (Sit; �it) ; subject to the constraint that

current pro�ts can provide limited information about Sit. Choosing p (Sit; �it) implies

that �rms can compute conditional expectations of the state for each realization of

pro�ts. Hence, choosing p (Sit; �it) is akin to having �rms optimally choose signals

about the state, subject to the constraint that the signal cannot be too informative.

Moreover, the optimal choice of p (Sit; �it) impacts the �rm�s beliefs about the state

and pro�ts and, hence, its exit decision.

While the �rm�s problem under rational inattention can be described as a signal

extraction problem common in many information-based setups, the nature and the

structure of attention costs in this theory is fundamentally di¤erent.

Models with information frictions postulate a monetary or physical cost of acquiring

and processing information. In contrast, the costs under rational inattention theory are

cognitive in nature: they represent the intellectual e¤ort of the �rm�s owners to not only

analyze the information (fully and freely available) about the economic environment

but also to map that information into an economic decision of whether to remain in

the market.

In modeling a �rm�s ability to process information, we posit a linear structure

of the attention cost: � � �t, where the shadow cost of processing information, �, is
14Note here that we could set up the model allowing for a joint distribution of exit and the state

variable. We decided not to do that because it would substantially increase the computational burden.

We refer the reader to Section 3.4.2 for a discussion of the implications of this alternative assumption

on the mechanism and results.
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expressed in utils (marginal pro�ts) per bit, and information capacity, �t; is expressed

in bits. Information capacity represents the informativeness of the signal the �rm

chooses, p (Sit; �it) ; for a given prior gt (Sit). The de�nition of �t is given by Shannon�s

mutual information between the decision variable and the state variable denoted as

I (p (Sit; �it)) = �t.15

Some models of rational inattention16 postulate that information capacity is �xed

each period, i.e., �t = �� for all t. Except for the cognitive nature of the attention cost,

this way of modeling information frictions is observationally equivalent to information-

based models with bounded rationality. In contrast, our speci�cation of attention

costs with elastic capacity allows for the possibility that �rms may choose to vary

the amount of information processed during their time in the market. Experimental

evidence in economics and psychology17 documents the relevance of cognitive costs

and it strongly supports our speci�cation of linear attention costs and elastic capacity.

Moreover, empirical investigations on information rigidities reveal that agents vary

their attention to economic conditions over the business cycle.18 These investigations

show that agents pay more attention in recessions than in expansions. The insight from

these studies that informs our modeling choice of a cognitive cost with elastic capacity

is that the value of information about economic conditions for an incumbent �rm varies
15Note that since exit is a deterministic function of pro�ts, Si ! �i ! ei (g (Si)), a trivial applic-

ation of the data processing inequality yields: I (Si; ei (g (Si))) = I (Si; �i) : See Cover and Thomas,

§2.10. See section 3.4 for further discussion on how this assumption impacts the results.
16See, e.g., Mackowiak and Wiederholt (2009).
17For examples of experimental evidence corroborating the nature and structure of the attention

cost in psychology see, e.g., Kahneman (1973) and Sperling and Dosher (1986). For experimental

evidence on rational inattention, see Cheremukhin, Popova and Tutino (2015).
18See, inter alias, Gorodnichenko, Coibion (2012) that provide evidence of U.S. business forecasts

using Survey of Professional Forecaster (SPF) as a proxy for information rigidities, and Loungani,

Stekler and Tamirisa (2013) that use surveys of professional forecasters in 46 countries.
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over time. This observation will be key for interpreting the results of Section 3. We

turn next to the formal description of the model under rational inattention.

2.4 Rational Inattention model

We assume that each �rm knows the process characterizing the exogenous entry of new

�rms and the law of motion of the state vector, Sit = f�t; vitg, which we de�ne as the

transition function, ~T (:) � ~T (Sit+1;Sitj�it) :

The state variable of the model is the joint distribution of f�t; vitg, gt (Sit). As

stated before, we postulate an environment where the exit decision is a deterministic

function of the optimal signals on pro�ts. Also, we assume away strategic interactions

among �rms.

Firm i solves the Bellman program:19

V (gt (Sit)) = max
ei(g(Sit))

fEJit; 0g ; (15)

where

EJit � max
p(Sit;�it)

Z
[�it (Sit)� ��t + �Vt+1 (gt+1 (St+1))] p (Sit; �it) d�itdSit; (16)

subject to the information constraint

�t =

Z
p (Sit; �it) log

 
p (Sit; �it)�R

p (Sit; �it) dSit
�
gt (Sit)

!
d�itdSit; (17)

and the updating rule for perception

gt+1 (Sit+1j�it = �̂t) =
Z
~T (Sit+1;Sitj�it = �̂t) p (Sitj�it = �̂t) dSit; (18)

g0 (S0) given. (19)

Equation (15) is the value function of the �rm, which is the maximum between the

outside option of zero, if the �rm decides to exit, and the expected discounted value

19The statement of the model under rational inattention follows Sims (2006) and Tutino (2013).
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of pro�ts (16), if the �rm decides to operate. The value function in (16) combines the

expected value of pro�ts this period, �it (Sit), and the expected value of future periods,

Vt+1 (gt+1 (St+1)) ; discounted at rate �. The maximization is over the joint distribution

p (Sit; �it) which is also the metric under which �rm i de�nes its own expectations.

The maximization is constrained by the Shannon�s processing capacity, (17), which

is a function of the optimal choice of the �rm, p (Sit; �it), and the prior gt (Sit). The

interpretation of this constraint has been discussed in the previous subsection. Here we

recall that � is the shadow cost of processing information associated with information

capacity �t de�ned by equation (17).

Equation (18) represents the law of motion of the state gt (Sit), i.e. the posterior

gt+1 (Sit+1) updated using Bayes� rule. Given a realization of pro�ts, �it = �̂t, the

expression in (18) convolves the stochastic knowledge of the law of motion of Sit sum-

marized by the transition function ~T (:) with the optimal strategy that led to �̂t, i.e.,

p (Sitj�it = �̂t). Finally, (19) provides the initial condition of the problem. Addition-

ally, we require the optimal p (Sit; �it) to belong to D (Sit; �it), that is the space of all

the distributions for which:

p (Sit; �it) � 0, 8�it; Sit; (20)Z Z
p (Sit; �it) d�itdSit = 1; (21)Z

p (Sit; �it) d�it = gt (Sit) ; (22)

where (20) and (21) constrain p (Sit; �it) to be positive and to sum to one, respectively.

Equation (22) represents the constraint that the joint distribution of the state and

pro�ts needs to be consistent with the prior belief about the state.

An equilibrium of this economy is a combination of optimal signals p (Sit; �it) ; an

exit rule ei (gt (Sit)), a law of motion ~T (:), prices fpit; Ptg and allocations fqit; Ct; lit; Etg

such that (i) signals and exit rules solve the �rm�s problem (15)-(22) given the law of

motion, (ii) allocations are optimal given prices and prices clear markets as described
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by equations (4)-(9), and (iii) the law of motion is consistent with the combination of

�rms�choices.

Though all the variables are de�ned on a compact support, decision rules are not

necessarily continuous because the exit decisions are discontinuous. This discontinuity

prevents a general proof of existence and uniqueness. However, we prove in Appendix

6 that the problem of the �rm is a contraction mapping. Hence it has a unique solution

given the law of motion. Any solution of the �rm maps uniquely into allocations, prices

and a law of motion.

Solving for the equilibrium of the model requires equating the economy-wide supply

obtained by aggregating the solution of the problem (15)-(22) for each �rm to the

economy-wide demand in (4).

To �nd an equilibrium, we solve for the �xed point of the tuple: f ~T (:) ; p (Sit; �it) ;

ei (gt (Sit))g, such that the law of motion ~T (:) is the outcome of exit decisions e (:)

based on the attention allocation solution p (:), and the attention allocation is optimal

given the law of motion.20

Iterations between the solution of the �rm�s problem and simulations of the economy

show that convergence to a �xed point is relatively quick. Moreover, our con�dence in

the existence and uniqueness of a �xed point in practice is reassured by the fact that

signi�cant variations in starting points for the law of motion do not lead us to di¤erent

equilibria.

Note also, that the problem of the �rm without information processing constraints

described by equation (14) is a special case of the constrained version when � = 0.

Therefore, the information processing constraint is the only source of any di¤erences

between the two models we consider.
20We approximated the law of motion using a �rst-order Markov chain. For a description of the

pseudo-code that we used to �nd the equilibrium see Appendix 7.
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2.5 Number of �rms

A dynamic rational inattention model demands a tall computational burden: each

�rm�s state is a distribution, gt (Sit), each �rm�s decision variable is a distribution,

p (Sit; �it), each �rm�s updating equation is a distribution, gt+1 (Sit+1j�it = �̂). As a

result of the computational complexity, we are limited in the number of �rms that we

can solve for.

However, Gabaix (2011) shows that because of the fat tailed distribution of �rms by

size in the U.S. economy, aggregate �uctuations can be well described by a handful of

�rms. When the distribution of �rm sizes is Pareto, the speed of decay of idiosyncratic

�uctuations is lnN instead of N1=2. This makes a huge di¤erence, as 106 �rms in a

world with a symmetric size distribution would be equivalent to an economy with on

the order of 102 �rms in a world with a Pareto �rm size distribution. This implies that

we can get a good idea of the behavior of our informationally unconstrained economy

in a granular world by increasing the number of �rms to 100.

The second important fact to note is that asymmetry (as measured by skewness)

is a normalized variable, which does not decay with the law of large numbers when

you aggregate idiosyncratic decisions of �rms. Using the same method Gabaix used to

derive properties of standard deviations, we derive properties of skewness in Appendix

2. This derivation shows, that the number of �rms has a very limited e¤ect on the

asymptotic skewness of the distribution of GDP growth rates.

Note that the granularity result makes combinations of idiosyncratic taste shocks

act as an aggregate demand shock. Gabaix (2011) shows that an appropriate degree of

granularity in the economy makes it possible for idiosyncratic shocks alone to generate

aggregate �uctuations comparable in magnitude to observed business cycles movements

in the U.S.
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3 Results

This section consists of three parts. In Section 3.1, we discuss our calibration and the

numerical solution of the rational inattention model from the previous section. Section

3.2 illustrates the mechanism of the model and its main �ndings. It also shows how

the mechanism helps the model match some properties of the data. In Section 3.3, we

compare the outcome of the model with information frictions to evidence of business

cycle asymmetries in U.S. data. Finally, in Section 3.4 we discuss the sensitivity of the

model�s predictions to alternative assumptions. Appendix 3 compares the outcomes

of the rational inattention model with the outcomes of a full information model and

Appendixes 4 and 5 provide alternative calibrations of key model parameters and of

the number of �rms, respectively.

3.1 Calibration

Each time period is a quarter. This choice determines the discount factor, �, at 0.99

and the entry rate, s; at 5%, the average fraction of opening establishments among total

private sector establishments in the U.S. in a given quarter, as measured by Business

Employment Dynamics (BED). We set the curvature of utility, , close to unity, which

implies logarithmic utility, consistent with a balanced growth path. We �x the grid

size for xi;t to the unit interval and set �x at 0:9. We set the scale of the idiosyncratic

component of tastes, g, to 0:8, which implies an average markup of 90% - the mean of

the marginal price-cost markup in the U.S. economy over the last 50 years (see Nekarda

and Ramey (2013)).

We set the probability of innovation, ', to 0:8, which in our view captures well

the dynamic and unpredictable nature of tastes for particular products. We set this

parameter in the ballpark of the numbers from Cooper, Haltiwanger and Willis (2007)

who estimate the autocorrelation of establishment-speci�c pro�tability shocks to be
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Symbol Parameter Value

� Time discount factor 0:99

 CRRA coe¢ cient 0:95

g Scale distance 0:8

s Entry rate 0:05

' Probability of innovation 0:8

� Cost of processing information 0:01

�i Grid for pro�ts [�0:48; 1:78]

� Grid for markup [1:15; 2:77]

xi Grid for distance [0:0; 1:0]

Table 1: Numerical approximation.

0.33, with the standard deviation of these shocks to be as large as 0.23. 21

We are not aware of direct evidence on �rm dynamics that would allow us to pin

down the shadow cost of information, �.22 We set the cost of information to 0:01, which

implies that the total shadow cost of information varies in the range from 10% to 20%

of average pro�ts in the dynamic equilibrium.

Finally, we set production capacity, A, targeting the average number of �rms at 15.

We set the grid for the markup, �t, to equi-spaced intervals between 1:15 and

2:77. Because of the computational intensity of the model with inattention, we use a

relatively coarse 20-point grid. We set the length of simulations to 250 periods, from

which we discard the �rst 50. Thus, the total history from which �rms can learn is

comparable to the length of available U.S. data.

21We think that indirect estimates of Cooper, Haltiwanger and Willis (2007) are best suited for

our calibration because they cover �rms in all sectors of the economy and are computed at quarterly

frequencies.
22For laboratory evidence on the size of information costs, �, see Cheremukhin, Popova and Tutino

(2015).
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In each case, we solve for a �xed point of the mapping between the exit rule ei;t (:)

and the transition rule T (:). We switch recursively between �nding the solution of

the problem of the �rm by value function iteration, and simulating the model us-

ing the solution to obtain the law of motion. Table 1 summarizes the calibration for

the numerical algorithm. Note that for the information-constrained model the joint

distribution g (vi; �) has been constructed so that the points on the simplex have mar-

ginal mean and standard deviation that re�ect properties of the empirical distribution.

Then, the transition function convolves the transition properties of g (�; xi) for each

possible value of pro�ts to assign a distribution for next period values of the state,

T (:) � T (�0; v0ij�; v; �).23

3.2 Mechanism and Findings of the Rational InattentionModel

In this subsection, we discuss the mechanism of the rational inattention model. First,

we illustrate the mechanism by analyzing the optimal choices of individual �rms. Then

we describe the implications of choices of individual �rms for aggregate outcomes.

These �ndings allow us to compare the aggregate behavior of our model with business

cycle asymmetries in the U.S. data in Section 3.3.

3.2.1 Attention allocation and the pro�t cycle of an individual �rm

We start by describing the properties of the solution of a representative �rm�s problem.

The left panel of Figure 2 shows information capacity, �, as a function of the �rm�s

realized pro�ts, �̂i. The black solid line indicates the total capacity acquired by the

23It is important to note that the solution of the model is extremely computationally intensive.

Even using advanced programming techniques on a powerful computational cluster, a solution for a

single calibration of the overly simpli�ed model with a relatively small number of �rms, takes about

a week. Thus, the computational intensity places signi�cant restrictions on the scope of our analysis.

To explore the sensitivity of our mechanism to the modeling assumptions we do robustness checks by

varying several key parameters in Appendix 4-5.
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�rm conditional on pro�ts. The blue dashed line and the green star-dashed line are

the components of conditional information capacity spent on forming the perception

of the aggregate state, �, and the idiosyncratic state, vi, respectively.24 As stated in

Section 2, we use markups as the aggregate state that captures tightness in the market

in which the �rm operates.

Figure 2 demonstrates that a rationally inattentive �rm optimally chooses to vary

the amount of information over its pro�t cycle. In particular, the �rm chooses a more

precise signal about economic conditions when its pro�ts are high than when its pro�ts

are low. The rationale for this �nding is as follows: When pro�ts are low, it does not

pay o¤ to process much information about economic conditions as low levels of pro�ts

trigger exit. When pro�ts are high, the �rms optimally decide to acquire a more

informative signal about economic conditions as misjudging the economic environment

at that point of its life-cycle implies a bigger loss of pro�ts for the �rm. Hence, the

value of information and, as a result, the optimal amount of total information, both

increase with the �rm�s pro�ts.

24The conditional capacities are computed as follows. We evaluate overall capacity condi-

tional on �̂i = (f�0:05g ; f0g ; f0:05g ; f0:35g ; f1g ; f1:5g) denoted �j�i using the optimal solution

p� (Si; �i = �̂i) of (15)-(19). The average is taken over all priors g (Si) in the simplex. From �j�i we

integrate out the component allocated to the idiosyncratic state to obtain the conditional capacity of

the aggregate state ��j�i: Similarly, the capacity allocated to idiosyncratic state �vi j�i is computed

by integrating out the aggregate state. The cross-correlation between � and vi in the optimal signal,

conditional on pro�ts, is computed as:

���;vi j�i = Cov (vi; �j�i = �̂i) =�̂
�
vi �̂

�
�

where �̂�X for X = (vi; �) denotes:

�̂�X =
p
V ar (Xj�i = �̂i):
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Figure 2. Capacity Allocation and Correlation.
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Figure 3. Expectations of Markups and Pro�ts.

We look at three additional sets of variables to understand changes in the signals

per se as well as how the relative values of signals about the aggregate and idiosyncratic

state evolve during the pro�t cycle of the �rm. First, we look at the �rm�s relative

capacity allocated to idiosyncratic and aggregate variables conditional on a particular

value of pro�ts, shown in the left panel of Figure 2. Second, we show the conditional

cross-correlation between aggregate and idiosyncratic condition, ��;vi, in the right panel

of Figure 2. Finally, Figure 3 shows the conditional precision of the �rm�s estimate
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of pro�ts and aggregate markups. The left-panel of Figure 3 plots expected pro�ts

against realized pro�ts across �rms while the right panel shows perceived markups

plotted against realized markups. In both illustrations, the black solid line is the

median estimate across �rms, the dotted lines indicate 10th and 90th percentiles, while

the red solid line depicts the locus where actual and expected variables coincide.

The conditional capacities illustrated in the left panel of Figure 2 show that a

�rm with low pro�ts optimally chooses to spend most of its information capacity on a

precise signal of the aggregate component, leaving little attention to the idiosyncratic

component. The �rm�s decision to closely track the aggregate markup stems from

the fact that the aggregate state is more persistent and, hence, a more predictable

determinant of pro�ts. Firms know the persistence of markups from the law of motion

of the state variable and they realize the importance of markups when forecasting

pro�ts by observing the history of realized pro�ts. Thus, when pro�ts are low, and

attention is less rewarding, a good signal of aggregate markup, �, is more valuable to

the �rm than a good signal on the idiosyncratic state vi. It follows that �rms are far

more interested in the aggregate state of the economy (Figure 2, left panel) and acquire

a precise signal about � (Figure 3, right panel) when pro�ts are low.

The only way a �rm can track the aggregate state precisely while expending overall

low information capacity is to increase the expected value of its product, vi. As shown

in the right panel of Figure 2, this goal is achieved by setting the perceived correlation

between � and vi to a large positive value, which implies both low overall information

capacity and a high share of attention devoted to the aggregate signal. However, by

boosting the perception of vi, the �rm overestimates its own pro�ts. This upward bias

in expected pro�ts is the reason why �rms decide to stay in the market even when

realized pro�ts are negative (Figure 3, left panel).

Indeed, in our model, expected pro�ts of �rm i are given by

E�i = (E�) (Evi) + ���vi��;vi � 1,

25



where E� is the expected value of aggregate markup, Evi is the expected value of

�rm�s idiosyncratic taste vi; �� and �vi are standard deviations of � and vi; and ��;vi is

the cross-correlation between � and vi. Conditional on low realized pro�ts, acquiring a

precise signal on � (with low E� and low �� ) produces an overestimate of pro�ts if the

�rm chooses a high perception of taste, Evi, and sets a large positive cross-correlation,

��;vi. While the stochastic properties of vi, captured by the prior, constrain its precision

from below, the �rm can simultaneously increase precision of the signal on � and reduce

overall information capacity � by increasing ��;vi.

The right panel of Figure 2 shows that, indeed, when pro�ts are low, the perceived

correlation between the idiosyncratic and aggregate state is strongly positive, whereas

it is close to zero for high and medium levels of pro�ts. Figure 3 shows that, conditional

on low pro�ts, the estimate of pro�ts is more precise but more upwardly biased than

estimates conditional on high pro�ts. With limited capacity, an accurate signal of �

implies a noisy signal of vi. Overestimating the idiosyncratic state to better understand

the aggregate state is why an incumbent �rm delays its exit decision past the point at

which operating is no longer pro�table.

3.2.2 Aggregate attention allocation and the business cycle

Now that we have described the motives behind decisions of individual �rms, we can

look at implications for aggregate behavior of the model economy. Figures 4 and 5

show the aggregate behavior of the model economy over a sample 50-year (200-quarter)

simulation. The top panel of Figure 4 shows pro�ts for the �rms that exit (red dots) and

stay (blue dots) over the course of the simulation. The central panel shows information

capacity of those staying and exiting, and �nally the bottom panel shows perceived

markups. The top panel of Figure 5 represents output of the simulated economy,

which equals aggregate consumption. The central panel represents the behavior of the

aggregate markup and the bottom panel displays the exit rate. In both �gures, shaded
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areas indicate recessions de�ned as periods following declines of at least 10 percent in

aggregate output.

Figure 4. Firm Dynamics under Inattention.

Figures 4 and 5 show that information capacity is at its peak in the immediate

aftermath of recessions and it slowly decreases in expansionary periods. This is because

a recession is characterized by many �rms simultaneously exiting the market. In the

aftermath, with little competition left, the aggregate markup increases, and incumbents

enjoy high pro�ts. As we have seen in Section 3.2.1, when pro�ts are high, the value

of being informed is high for each incumbent, so �rms increase their attention. As

new �rms join the market, markups and pro�ts wind down as does the value of paying

attention to economic conditions. With less overall attention to economic conditions,

low-pro�t �rms accumulate little information about idiosyncratic conditions and have

27



an overly optimistic perception of their pro�ts. As a result, they delay exit decisions

past the point where they cease being pro�table.

Figure 5. Aggregate Economy with Inattention.

We can see from Figure 4 that information capacity declines in expansions, and

is especially low in periods immediately preceding recessions. As we learned in the

previous section, when pro�ts are low, incumbent �rms allocate most of their informa-

tion processing capacity to getting a precise signal of aggregate markups, but pay very

little attention to idiosyncratic tastes for their own products (Figure 2, left panel). In

these periods a large fraction of �rms are guided by signals about a common variable:

the aggregate markup. Thus, optimally chosen signals on markups serve as a market

cleansing device, eliminating �rms that have low pro�tability. This mechanism explains

the pattern of exits in Figure 4 whereby many �rms exit simultaneously, triggering a
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recession.

Given that �rms misjudge the value of their product when pro�ts are low (see Sec-

tion 3.2.1), they tend to stay in the market beyond the point when they are pro�table.

With too many �rms in the market, markups keep shrinking. These events contribute

further to �rms�losses until they eventually exit.

The asymmetry in the allocation of attention is the driving force of the business

cycle in our model economy. Firms optimally decide to monitor closely economic

conditions in the aftermath of a recession, as large scale exits trigger high markups.

As the economy recovers, markups and pro�ts decrease, and �rms lower the optimal

amount of attention to the economy. With decreasing attention and markups, �rms

delay their exit up to a point where signals on deteriorating pro�ts can no longer be

ignored.

In this environment, the economy-wide markup and information capacity (atten-

tion) are a lagged mirror image of output: output rises in expansions when markups,

pro�t margins and �rms� attention decrease; and it declines in contractions when

markups, pro�t margins and �rms�attention rise. Markups lag output because a de-

cline in the number of incumbent �rms (in a recession) implies a decline in production

immediately, and a higher markup (with less competition) starting from next period.

Having established the key �rm-level and aggregate predictions of the model with

rational inattention, we turn to comparing these predictions with U.S. data in the next

section.

3.3 Comparison of model predictions with U.S. business cycles

To describe the behavior of output and markups, we utilize quarterly data on U.S. real

GDP from the BEA and quarterly data on markups for the U.S. economy from 1947:I

to 2014:IV constructed by Nekarda and Ramey (2013).25

25We �nd that using alternative measures and vintages of markups, leads to similar results.
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In our theoretical model, there is no distinction between �rms and establishments,

so �rm entry and exit is synonymous to an opening or closing of an establishment. For

an assessment of the properties of �rm entry and exit rates we use quarterly data on

the number of opening and closing establishments in the U.S. economy from 1992:3 to

2014:4 reported by the Business Employment Dynamics survey.

We build on the �ndings of Jaimovich and Floetotto (2008) who show that closing

and opening establishments account for a large fraction of cyclical variations in job

destruction and job creation rates. In order to extend the analysis of entry and exit to

a longer time period, we use job destruction and creation rates in manufacturing since

1947 from Davis et al. (2006). For the most recent period, we extend the series using

job creation and destruction rates reported by the BED. Thus, we arrive at the joint

job destruction and creation series covering the 1947-2014 period as a proxy for exit

and entry rates.

We measure the average behavior of each series over the business cycle by regressing

on a linear trend and 16 distributed lags of a recession indicator.26 We borrow this

methodology directly from Coibion and Gorodnichenko (2015).

Figure 6 shows the average behavior of GDP, markups, entry, exit, job creation and

destruction rates in the U.S. economy over the course of a recession (shaded in gray).

Real GDP shows a growth asymmetry with the decline occuring faster than recovery.

Markups show the opposite asymmetry: they rise steeply following recessions and fall

gradually in expansions. The peaks in markups follow slumps in GDP. Thus, markups

appear to be counter-cyclical, lagging the business cycle by a few quarters. We also

observe that both exit and job destruction rates increase substantially for the duration

of a recession, while job creation rates show a much smaller and shorter decline, and

entry rates remain �at over the course of a recession.

This pattern is in agreement with our interpretation that markups rise sharply in

26A recession indicator takes a value of 1 in the �rst quarter of each US recession, and a value of 0

for all other periods.
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the aftermath of a recession due to a decline in the number of competitors, and then

fall gradually in a boom as new businesses populate the economy. The behavior of the

data is also similar to that generated by our model, as follows from a comparison of

Figures 6 and 7. It illustrates that the asymmetry present in the data is consistent

with that produced by our model with inattention.

Figure 6. Average Response to a U.S. Recession

Sources: NIPA, Nekarda and Ramey (2013), Davis et. al. (2006)
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Figure 7. Average Response to Model Recession.

Sources: authors�calculations

Figure 8. State-dependent Information Rigidity.

Sources: authors�calculations, Coibion and Gorodnichenko (2015)
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Our model has a testable prediction about information rigidity. As show in Figure

8 (left panel) our model predicts that business owners acquire and process more in-

formation, and, hence, have a more precise estimate of economic conditions during and

in the aftermath of recessions. The precision of their estimates declines as the economy

expands. Figure 8 (right panel) shows the evolution of the degree of information rigid-

ity over the business cycle measured by Coibion and Gorodnichenko(2015). Consistent

with our model, economic agents process information about macroeconomic conditions

faster in the aftermath of a recession rather than at its onset. Our model provides a

rationale for their �ndings: The cost of misjudging market conditions in the aftermath

of a recession is low relative to the value of learning about market conditions. Coibion

and Gorodnichenko (2015) show that their �ndings are robust across alternative U.S.

surveys and across countries.27 They point out that this evidence poses a challenge

for both sticky-information28 and noisy-information29 models that fail to capture the

state-dependent nature of information acquisition and revisions of expectations. In

contrast, the predictions of our model agree with their evidence. Thus, the mechanism

that we propose rationalizes state-dependent information processing over the business

cycle.

3.4 Sensitivity of model�s predictions to alternative assump-

tions

In this section we discuss the sensitivity of our �ndings to simplifying assumptions that

helped in solving the model and increased the transparency of the underlying mech-

anism. We start by describing how these assumptions a¤ect the model�s predictions

27For the U.S., in addition to SPF they use the Michigan Survey and the Livingston Survey. They

also construct a dataset of quarterly forecasts from the international survey of professional forecasters

from Consensus Economics, which includes 12 countries.
28See, e.g., Mankiw and Reis (2002).
29See, e.g., Lucas (1972).
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and performance when compared with U.S. data . We then move on to discussing

alternatives to two core modelling assumptions: (1) exogenous entry; (2) the exit rule

as deterministic function of expected pro�ts. We also perform a number of robust-

ness checks that consider changes in the parameters of the model. We report those in

Appendices 4 and 5.

The �rst dimension of U.S. data that our model does not capture involves the

length of a recession. Figure 6 indicates that in the U.S. economy it takes on average

3-4 quarters for the survivors to realize that many competitors are gone and that

they can start charging higher prices. In our model, this adjustment is accomplished

within a single quarter. We could introduce additional inertia into the model by either

postulating a slow pass-through of changes in tastes to changes in prices or by assuming

a frictional bankrupcy process that delay exits. Both sources of inertia would slow down

the recessionary transition without a¤ecting the decision-making process of incumbent

�rms. The resulting model would be more convoluted than the one presented but it

would likely account for a large part of the current discrepancy between the lead-lag

predictions of the model and the cyclical properties of the data.

The second dimension of the data that our model does not match quantitatively is

the strength of the asymmetry: our model over-predicts the size of the asymmetry in

output, markups and exit rates. The quantitative mismatch between these moments is

expected, as the model is designed to abstract from many features of the real world that

would dampen the asymmetry. Since cyclicality and asymmetry are crucial predictions

of our model, we next explore how endogenous entry and stochastic exit would a¤ect

these predictions.

3.4.1 Endogenous entry

Motivated by evidence of mild and symmetric �uctuations of entry rates over the

U.S. business cycle, we assume in the model that �rms enter at an exogenously given
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constant rate. Alternatively, we could postulate an environment where entry is costly as

in Caballero and Hammour (1996), with rationally inattentive �rms deciding whether

to enter. Given the assumption that new �rms get the highest possible valuation

vi, each perspective entrant would base its decision on the comparison of the value

of entry determined by expectations of aggregate markups and the costs of entry and

information-processing. Since we assume no strategic interactions between incumbents,

it is also natural to abstract from strategic interactions between entrants.

In this case, the entry rate would change only in response to changes in aggregate

conditions, which are in turn determined by incumbent �rms�decisions. The relative

size of information costs and costs of entry would jointly determine the elasticity of

the entry rate to variations in markups. The response of entry would be bigger if entry

costs or the costs of processing information are low, and the response would be smaller

with high costs. Our baseline model is equivalent to the case where both costs are

high. With low costs, the entry rate follows the behavior of aggregate mark-ups: low

at the onset of recessions and high in the aftermath of recessions. In this instance, the

aggregate �uctuations would be dampened with respect to the baseline model as more

businesses would open once there are few �rms left in the market. However, since entry

is purely a response to decisions of incumbents, this mechanism would only lead to a

decrease in the size of the aggregate asymmetry, but would not reverse it or change

its shape. Looking at U.S. data that exhibit only mild �uctuations and do not exhibit

any asymmetry in entry rates, a calibration of the model would naturally set the entry

costs to a high value and produce the same outcome as our baseline model.

3.4.2 Stochastic exit

In the model, we assume that information frictions restrict signals about state vari-

ables, but we place no restrictions on information �ow involved in making the discrete

choice of whether to exit. As a consequence, the exit rule is a deterministic function of
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a �rm�s information choice. While this assumption simpli�es the computational prob-

lem, in this section we argue that allowing for stochastic exit by further constraining

information �ow would not a¤ect a �rm�s choice of information structure. However,

it might mildly dampen aggregate �uctuations, with business cycles displaying less

pronounced peaks than the baseline model.

To see this, note that with stochastic exit, the new choice variable of �rm i would

be the joint distribution of (1) markups � and idiosyncratic taste shocks, vi, denoted as

Si = f�; vig ; (2) the observable pro�ts, �i; and (3) the discrete exit choice ei. Let this

new choice variable be denoted by the joint distribution p (Si; �i; ei). Let q denote the

marginal distribution of exit, i.e., q � Pr (ei = 1) and (1� q) = Pr (ei = 0). Then, one

can rewrite the �rm�s information structure p (Si; �i; ei) as the �rm�s choice of (q; 1� q)

and the simultaneous choice of the conditional distribution f (Si; �ijei = 0).30 In this

setup, the problem solved by the choice of f would be identical to that solved by the

choice of p in the baseline model. In addition, incumbent �rms would exit by mistake

with probability q. The frequency of these erroneous exits would vary over the business

cycle in response to changes in expected pro�ts.

This speci�cation shows that the basic mechanism guiding the �rm�s optimal in-

formation choice is unchanged. However, since now the probability of exit is linked

to markups via Shannon�s channel, the exit probability would be low when pro�ts are

high, and increase as pro�ts decline in an expansion. Firms would time exit more pre-

cisely in the aftermath of a recession when their forecasts of markups are more precise.

Similarly, since �rms pay little attention and misjudge their pro�tability when markups

are low, there would be an increase in the number of �rms exiting with relatively high

pro�ts during expansions. These two e¤ects together are likely to dampen the size of

peaks and troughs over the business cycle compared with the baseline model. However,

they are unlikely to be strong enough to completely o¤set the asymmetries.

30The expectations conditional on exit, ei = 1, are degenerate since in this case pro�ts equal 0

forever.
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4 Conclusion

This paper shows that information-processing constraints based on rational inattention

matter for business cycles analysis. In particular, modelling �rms�decisions to exit the

market as arising from limited information-processing capacity helps rationalize the

di¤erent degree of information rigidity over the business cycle documented by Coibion

and Gorodnichenko (2012, 2015).

The key predictions of the model hinge on the mechanism behind �rms�optimal

choice of information over the business cycle and the cognitive nature of the attention

cost. As far as the mechanism is concerned, we show that �rms optimally choose to

pay more attention to economic conditions in the aftermath of a recession, when the

value of being attentive is superior to the cost. They remain relatively uninformed in

economic expansions when acquiring precise signals is not worth their attention.

The cognitive nature of information-processing costs that we postulate is corrobor-

ated by experimental evidence in economics, neurology and psychology.

Our mechanism is capable of yielding starkly di¤erent policy implications compared

to standard business cycle models. To smooth business cycles, a planner might be un-

able to acquire and process information about product demand to command �rm exit.

Instead, he might want to provide businesses with (low-bit) systematic information

about aggregate variables to foster coordination.

Alternative policies of managing exits can smooth the cycle at the cost of slowing

down long-term economic growth. This prediction is consistent with multiple central

planning experiments, undertaken in di¤erent parts of the world. Our model has the

potential to provide estimates of how such policies a¤ect long-term economic growth.

We leave all these normative questions for future research.
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Appendix NOT FOR PUBLICATION

Appendix 1: Substitution between products

Here we describe a generalization of the model to the case of non-perfect substitution.

The representative household trades o¤ leisure for consumption, maximizing a standard

utility function:

1X
t=0

�t
�
C1�t � 1
1�  � Et

�
; (23)

with respect to the supply of labor, Et, and a Dixit-Stiglitz consumption aggregator,

Ct, which weights di¤erentiated products, qit, by their tastes, vit:

Ct =

 
KtX
i=1

v
1
�
it q

��1
�

it

! �
��1

: (24)

The household owns all the �rms in the economy. It spends wage and pro�t income

on contemporaneous consumption, maximizing utility subject to a budget constraint:

KtX
i=1

pitqit = wtEt +
KtX
i=1

�it: (25)

Maximization yields the following �rst-order condition, which in a Walrasian equi-

librium determines the price for each good indexed by i:

pit = wtC
�
t

�
Ct
qit

� 1
�

v
1
�
it ; (26)

which is driven by variations in idiosyncratic tastes vit: Variations in tastes are the

only source of uncertainty in the economy.

We de�ne a consumption price index as follows:

Pt =
1

Ct

KtX
i=1

pitqit = wtC
�
t (27)
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The economy is populated by Kt �rms, which pro�t from producing and selling

di¤erentiated products qit at price pit. In addition to wages, a �rm pays a �xed cost of

operating the technology, f :

�it = pitqit � wtlit � f (28)

Firms use identical production functions, which are linear in labor inputs, lit :

qit = Alit (29)

Within each period �rms maximize pro�ts (28) with respect to output, qi;t, and

labor input, li;t, subject to the production function (29) and given the individual de-

mand curve (26). The �rst order condition of the �rm pins down the optimal level of

output as a function of the idiosyncratic shock, vi;t:

qit
A
=
� � 1
�

C
1
�
�

t v
1
�
it q

1� 1
�

it (30)

We substitute output as a function of taste from (30) into (24) to show how tastes

determine consumption and prices:

Pt = C
�
t =

1

A

�

� � 1

 
KtX
i=1

vit

!� 1
��1

(31)

Without loss of generality normalize operating cost, f; to one and let the wage, wt;

be the numeraire. The expression for pro�ts then simpli�es to:

�it = �t+1vit � 1: (32)

where the aggregate markup, �t+1; is each �rm�s su¢ cient statistic, which charac-

terizes the aggregate state of the economy:

�t+1 = A
�1 (� � 1)

�1

�

 
KtX
i=1

vi;t

! ��
��1

(33)
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This functional form is equivalent to the one presented in the text, except that  is

substituted by ��
1�� as long as  � 1, which we assume in the calibration. Depending

on the degree of substitution, � > 0; � 6= 1, this expression determines the behavior

of the economy instead of : The rest of the simulation procedure remains intact. In

the limit, as � ! 1; products become perfect substitutes, and we arrive at a model

similar to that presented in the text. We work with the simpler version for the purpose

of transparency.

Appendix 2: Properties of Skewness

Note that skewness of a sum of independent random variables can be expressed as

follows:

�Xi =
E[(�Xi�EXi)3]
(��Xi)

3 = �E(Xi�EXi)3

(��Xi)
3 =

�i

h
(V arXi)

3
2 SkewXi

i
(�iV arXi)

3
2

Let output in the economy be a sum of i.i.d. outputs of individual �rms: Yt = �Si:

Then, aggregate GDP growth follows

�y = �Y
Y
= �Si

Y
�i"it = �si"it

Let for simplicity �rms have the same volatility � and skewness , then skewness

of growth is:

�y = �si"it =
�i

h
(V arXi)

3
2 SkewXi

i
(�iV arXi)

3
2

=
�i

�
(s2i �2)

3
2 Skew(si"i)

�
(�2�is2i )

3
2

=
�is

3
i i

(�is2i )
3
2

Using the properties of a power distribution:

�is
2
i � 1

N2�
�
i
N

�� 2
� = N

2
�
�2
�
�i�

2
�

�
�is

3
i � 1

N3�
�
i
N

�� 3
� = N

3
�
�3
�
�i�

3
�

�
Hence, we can express the skewness of GDP as the product of skewness of processes

for individual �rms multiplied by a ratio of �nite sums:
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If Zipf�s law holds, � = 1 (Pareto distribution), then �y � 0:52: If we adopt

the standard estimate for the US economy, � = 1:055, the result is little changed:

�y � 0:48: However, if we assume the other extreme � = 2 (no fat tails), then

�y � 0:06:

The key message from this derivation is that the number of �rms has no e¤ect

on the asymptotic skewness of GDP growth. A power law sized distribution reduces

skewness of aggregate �uctuations by a constant, independent of the exact number of

�rms. A similar argument can be made for cross-correlations.

Appendix 3: Comparison with the full-information model

To compare the behavior of the information constrained economy with the full inform-

ation economy, we �rst plot the paths of output and markups, entry and exit rates for a

sample of 50 year periods for each of the two models. Here we adopt a simple de�nition

of a recession - an event when the number of �rms drops by at least 20 percent in a

single period.31 The top panels of Figures 9A and 9B below show the simulated paths

with shaded recessions.

The bottom panels of Figures 9A and 9B compare the laws of motion of the ag-

gregate markup for the two models. Figure 9B demonstrates, that in an inattentive

economy the aggregate markup has two potential behaviors. It either drifts down

slowly, or jumps up sharply. Outliers above the diagonal are more common than be-

low the diagonal. In the full information economy, o¤-diagonal behavior is much less

pronounced.

31This roughly corresponds to a 3-5% drop in GDP in a world with 200 �rms.
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Figure 9A. Model with Full Information.
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Appendix 4: Sensitivity to Key Parameters

First, we explore the sensitivity of our results to variations in two important parameters:

the entry rate, s; and the probability of innovation, '. Table 2 displays the behavior

of the two models under the benchmark calibration (s = 0:05; ' = 0:8) and compares

it to alternative calibrations (s = 0:03 and ' = 0:2).

When full information is available, the decrease in the entry rate, s; makes cycles

slightly more asymmetric, while persistence of individual histories, 1 � ', increases

aggregate persistence without a¤ecting much the length and asymmetry of the cycle.

When capacity of processing information is limited, the cycles are much bigger and

much more asymmetric compared to the full information case.

In this context, both a decrease in the entry rate s and an increase in persistence

of individual histories (reduction of ') help alleviate uncertainty, reducing the amount

of information that needs to be processed. A lower entry rate makes the aggregate

component more predictable, while persistence of individual histories makes the idio-

syncratic component more predictable. As a result, less e¤ort is required to process

information, and better coordination is achieved.

Second, since the main di¤erence between the two models we consider is the increase

in the cost of processing information, �, from 0 to 20 percent of average pro�ts, it is in-

structive to explore the e¤ect of a further increase in the cost of information processing.

Surprisingly, an increase by a factor of �ve in the cost of processing information, which

now accounts for about 80 percent of average �rm pro�ts, leads to a decrease in both

the asymmetry and persistence of cycles. The reason for this is that in this case the

costs of processing information become so high, that �rms give up on getting a precise

signal even about aggregate conditions, and base their exit decisions only on pro�ts in

the previous period. This behavior leads to almost uniformly distributed random exits

of �rms which are not necessarily the ones producing the most outdated products.

Table 3 shows how the degree of asymmetry depends on various other changes in
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�Y �P �Y � 5�10% � 10�20% �>20% �Y �P X R

Full Info 0.13 0.13 0.57 1.8 2.6 15 -.18 .26 1.6 1.1

s = 0:03 0.12 0.13 0.65 2.2 5.1 62.5 -.39 .29 2.6 1.9

' = 0:2 0.13 0.13 0.67 2.2 2.8 7.8 -.42 .58 2.3 1.0

Inattention 0.26 0.21 0.79 9.4 10 8.3 -4.0 3.8 4.0 1.6

s = 0:03 0.15 0.13 0.84 1.8 6.3 9.4 -1.7 0.6 3.6 1.6

' = 0:2 0.13 0.11 0.49 1.8 2.4 11 -.08 .31 1.6 1.3

� = 0:05 0.13 0.12 0.52 1.5 24 19 -.01 .03 1.1 1.2
� denotes standard deviation; � - autocorellation; �% - average periods between contractions;

 - skewness; �Y - growth rate of GDP; �P - growth rate of markups; X - exit rate; R - entry rate.

Table 2: Sensitivity to variations in parameters

s � ' �Y �P X R

5% 1% 0.8 -4.0 3.8 4.0 1.6

3% 1% 0.8 -1.7 0.6 3.6 1.6

3% 1% 0.65 -1.1 1.0 2.0 1.3

5% 1% 0.2 -.08 .31 1.6 1.3

5% 5% 0.8 -.01 .03 1.1 1.2

5% 0.5% 0.8 -.41 .34 1.3 1.1

3% 2% 0.8 -1.2 0.95 2.0 1.3
s denotes entry rate; � - cost of processing information; ' - probability of innovations;  - skewness;

�Y - growth rate of GDP; �P - growth rate of markups; X - exit rate; R - entry rate.

Table 3: Sensitivity of skewness to variations in parameters
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parameters. Results reported in Table 3 con�rms the hump-shaped response of skew-

ness to variations in the cost of information, as well as the reduction in skewness as-

sociated with increased predictability of (reduction in uncertainty about) idiosyncratic

shocks and entry rates.

Appendix 5: Sensitivity to Number of Firms

Table 4 shows what happens when we gradually increase the number of �rms in the full-

information case. Second moments of �uctuations gradually decrease to values, which

are similar to those observed in developed countries. The length of cycles increases to

values, which are much closer to the average lengths of cycles in developed countries.

Note from Table 2 that the Poisson entry process does play a role in generating the

asymmetry in aggregate �uctuations. Table 4 shows that an increase in the number

of �rms decreases the asymmetry in the entry rate and as a result the asymmetry in

the exit rate in the full-information economy. (Tables 5-7 give more details on the

simulations.) However, we know from the empirical evidence that cyclicality of entry

is not a source of asymmetric �uctuations in the data. Hence, in order to explain the

observed asymmetric �uctuations for a given number of �rms, the asymmetry in the

exit margin must drive the asymmetry in the business cycles. This is precisely the case

in the information-constrained economy but it is not the case in the full-information

model.

A power law sized distribution reduces skewness of aggregate �uctuations by a

constant on the order of 0.5, independent of the exact number of �rms. Therefore,

the asymptotic behavior of skewness of GDP growth in an economy with a million

�rms will be a fraction on the order of one half of skewness of GDP growth in our

information-constrained economy with �fteen �rms. Thus, we can be con�dent that

the key business cycle predictions of our model will be preserved if the number of

�rms was substantially increased: the size of �uctuations would be smaller, but the
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�C �P �C � 5�10% � 10�20% �>20% �Y �P X R

K=15 0.13 0.13 0.57 1.8 2.6 15 -.18 .26 1.6 1.1

K=35 0.09 0.09 0.59 2.9 8.1 1 -.13 .15 1.1 0.7

K=70 0.07 0.07 0.64 5.3 1 1 -.05 .08 0.5 0.6

K=100 0.05 0.05 0.62 7.1 1 1 -.14 .17 0.5 0.4
� denotes standard deviation; � - autocorellation; �% - average periods between contractions;

 - skewness; �Y - growth rate of GDP; �P - growth rate of markups; X - exit rate; R - entry rate.

Table 4: Sensitivity to the number of �rms, K

�C �P �C � 5�10% � 10�20% �>20% �C �P X R

Baseline 0.13 0.13 0.57 1.8 2.6 15 -.18 .26 1.6 1.1

 = 0:5 0.23 0.10 0.83 1.7 4.3 20.8 -.47 .53 1.9 1.1

 = 1:5 0.11 0.16 0.51 1.9 2.3 15.6 -.24 .23 1.5 1.2

 = 2:5 0.10 0.27 0.39 2.1 2.5 8.9 -.35 .44 2.0 1.4

' = 0:5 0.12 0.12 0.62 1.8 2.5 20.8 .03 .19 2.0 1.0

' = 0:2 0.13 0.13 0.67 2.2 2.8 7.8 -.42 .58 2.3 1.0

s = 0:025 0.12 0.13 0.65 2.2 5.1 62.5 -.39 .29 2.6 1.9

Table 5: Full Information, K=15

�C �P �C � 5�10% � 10�20% �>20% �C �P X R

Baseline 0.09 0.09 0.59 2.9 8.1 1 -.13 .15 1.1 0.7

 = 0:5 0.19 0.08 0.81 3.6 31.5 1 -.14 .16 0.5 0.7

 = 1:5 0.08 0.11 0.60 2.3 15.6 1 -.01 .08 0.8 0.7

 = 2:5 0.06 0.16 0.35 2.3 5.4 1 -.02 .28 1.1 0.7

' = 0:5 0.08 0.08 0.69 2.6 10.4 1 -.14 .16 1.0 0.7

' = 0:2 0.08 0.08 0.74 3.2 10.4 1 -.06 .02 1.1 0.7

Table 6: Full Information, K=35
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�C �P �C � 5�10% � 10�20% �>20% �C �P X R

Baseline 0.07 0.07 0.64 5.3 1 1 -.05 .08 0.5 0.6

 = 0:5 0.10 0.05 0.81 5.1 1 1 -.06 .06 1.5 0.6

 = 1:5 0.05 0.07 0.32 2.8 62.5 1 -.14 .17 1.3 0.6

' = 0:2 0.09 0.09 0.87 4.1 1 1 -.09 .13 0.8 0.6

Table 7: Full Information, K=70

asymmetry would remain.

We conclude that even though it is hard to infer properties of second moments from

our simpli�ed model, this model has strong predictions for skewness and asymmetric

behavior which is virtually immune to aggregation and variations in the number of

�rms.
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Appendix 6: Bellman Recursion

Concavity of Mutual information in the Belief State.

For a given p (�j s),Mutual Information is concave in g (S)

Proof. Let Z be the binary random variable with P (Z = 0) = � and let S = S1 if

Z = 0 and S = S2 if Z = 1. Let the set of all pro�ts be �i 2 A = f�1; ::; �ngConsider

I (S; Z; �) = I (S;A) + I (Z;AjS)

= I (S;AjZ) + I (Z;A)

Conditional on S, A and Z are independent, I (A;ZjS) = 0: Thus,

I (S;A) � I (S;AjZ)

= � (I (S;AjZ = 0)) + (1� �) (I (S;AjZ = 1))

= � (I (S1;A)) + (1� �) (I (S2;A))

Q.E.D.

Lemma 1 For a given p (�j s) ; the expression (17) is concave in g (s)

The Bellman Recursion is a Contraction Mapping.

Proposition 1. For the discrete Rational Inattention �rm�s problem, value recursion

H and two given functions V and U , it holds that

jjHV �HU jj � � jjV � U jj ;

with 0 � � < 1 and jj:jj the supreme norm. That is, the value recursion H is a

contraction mapping.

Proof. The H mapping displays:

HV (g) = max
p
[HpV (g)]+ ;
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with

HpV (g) =

"X
s2S

 X
�2A
�p (�js)

!
g (s)� ��+ �

X
s2S

X
�2A

(V (g0� (�))) p (�js) g (s)
#
:

Suppose that jjHV �HU jj is the maximum at point g. Let p1 denote the optimal

control for HV under g and p2 the optimal one for HU

HV (g) = [Hp1V (g)]+ ;

HU (g) = [Hp2U (g)]+ :

=) jjHV (g)�HU (g)jj = [Hp1V (g)]+ � [Hp2U (g)]+ :

Suppose (without loss of generality) that HV (g) � HU (g) : Since p1 maximizes HV

at g , it follows that

[Hp2V (g)]+ � [Hp1V (g)]+ :

Hence,

jjHV �HU jj =

jjHV (g)�HU (g)jj =

[Hp1V (g)]+ � [Hp2U (g)]+ �

[Hp2V (g)]+ � [Hp2U (g)]+ �

�
X
w2W

X
a2A

[(V p2 (g0a (�)))� (Up2 (g0a (�)))] p2g (w) �

�
X
w2W

X
a2A

(jjV � U jj) p2g (w) �

� jjV � U jj :

In the derivation above we can open the positive brackets because the pro�t function

is evaluated at the same point p2. Then either both brackets do not bind, or only the

second binds, or both bind, which implies a � sign. Otherwise, the whole expression

is exactly equal to zero, which also implies a contraction mapping. Recalling that

0 � � < 1 completes the proof.
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The Bellman Recursion is an Isotonic Mapping

Corollary For the discrete Rational Inattention �rm�s problem recursion H and two

given functions V and U , it holds that V � U =) HV � HU; that is the value

recursion H is an isotonic mapping.

Proof. Let p1 denote the optimal control for HV under g and p2 the optimal one

for HU

HV (g) = Hp1V (g) ;

HU (g) = Hp2U (g) :

By de�nition,

Hp1U (g) � Hp2U (g) :

From a given g, it is possible to compute g0� (�)jp1 for an arbitrary c and then the

following will hold V � U =)

8 (g (s) ; �) ;

V
�
g0� (�)jp1

�
� U

�
g0� (�)jp1

�
=)X

�2A
V
�
g0� (�)jp1

�
� p1g �

X
�2A
U
�
g0� (�)jp1

�
� p1g =)

X
s2S

 X
�2A
�g (s) + �

X
�2A
V
�
g0� (�)jp1

�
� p1g

!

�
X
s2S

 X
�2A
�g (s) + �

X
�2A
U
�
g0� (�)jp1

�
� p1g

!
=)

Hp1V (g) � Hp1U (g) =)

[Hp1V (g)]+ � [Hp1U (g)]+ =)

[Hp1V (g)]+ � [Hp2U (g)]+ =)

HV (g) � HU (g) =) HV � HU:

Note that g was chosen arbitrarily and, from it, g0� (�)jp1 completes the argument that

the value function is isotone.
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The Optimal Value Function is Piecewise Linear

Proposition 2. If the pro�t function is weakly quasi-convex and if Pr (�j; Si) satis-

�es (18) and (20)-(22), then the optimal n � step value function Vn (g) can be

expressed as:

Vn (g) = max
f�ingi

X
i

�n (Si) g (Si)

where the �� vectors, � : S ! R, are jSj �dimensional hyperplanes.

Proof. The proof is done via induction. We assume that all the operations are

well-de�ned in their corresponding spaces. Let � be the set that contains constraints

(18),(20)-(22) .For planning horizon n = 0, we have only to take into account the

immediate expected rewards and thus:

V0 (g) = max
p2�

"X
s2S

 X
�2A
� (s) p

!
g (S)

#
(34)

and therefore if I de�ne the vectors�
�i0 (S)

	
i
�
 X
�2A
� (s) p

!
p2�

(35)

We have the desired

V0 (g) = max
f�i0(S)gi



�i0; g

�
(36)

where h:; :i denotes the inner product h�i0; gi �
X
s2S
�i0 (s) ; g (s). For the general case,

using equations (15)-(16):

Vn (g) = max
p2�

26664
X
s2S

 X
�2A
� (s) p (�jS)

!
g (S)+

+�
X
s2S

X
�2A

�
Vn�1

�
g0� (�)p�

��
p (�jw) g (s)

37775 (37)

by the induction hypothesis

Vn�1 (g (�)j�) = max
f�in�1gi



�in�1; g

0
� (�)

�
(38)
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Plugging into the above equation (18) and by de�nition of h:; :i ,

Vn�1 (g
0
� (�)) = max

f�in�1gi

X
s02S

�in�1

 X
s2S

X
�2A
T (�; s; �) Pr (s; �)

Pr (�)

!
(39)

With the above:

Vn (g) = max
p2�

266664
X
s2S

 X
�2A
� (s) p

!
g (s)+

+�maxf�in�1gi
X
s02S

�in�1 (s
0)

 X
s2S

 X
�2A

T (�;s;�)
Pr(�)

� p
!
g (s)

!
377775

= max
p2�

"
h� � p; g (s)i+ �

X
s2S

1

Pr (�)
max
f�in�1gi

*X
s02S

�in�1 (s
0)T (�; s; �) � p; g

+#
(40)

At this point, it is possible to de�ne

�jp;� (s) =
X
s02S

�in�1 (s
0)T (� : s; �) � p: (41)

Note that these hyper-planes are independent on the prior g for which I am computing

Vn: Thus, the value function amounts to

Vn (g) = max
p2�

"
h� � p; gi+ �

X
�2A

1

Pr (�)
max
f�jp;�g

j



�jp;�; g

�#
; (42)

and de�ne:

�p;�;g = arg max
f�jp;�g

j



�jp;�; g

�
: (43)

Note that �p;�;g is a subset of �jp;� and using this subset results into

Vn (g) = max
p2�

"
h� (s) � p; gi+ �

X
�2A

1

Pr (�)
h�p;�;g; gi

#

= max
p2�

*
��+�

X
�2A

1

Pr (�)
�p;�;g; g

+
: (44)

Now �
�in
	
i
=
[
8g

(
� � p+ �

X
�2A

1

Pr (�)
�p;�;g

)
p2�

(45)
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is a �nite set of linear function parameterized in the action set. Note that a maximum

of a piecewise linear convex function and a zero (a constant function) is also piecewise

linear and convex.

.. and Convex (PCWL)

Proposition 3. Assuming weak quasi-convexity of the pro�t function and the condi-

tions of Proposition 1, let V0 be an initial value function that is piecewise linear

and convex. Then the ith value function obtained after a �nite number of up-

date steps for a rational inattention consumption-saving problem is also �nite,

piecewise linear and convex (PCWL).

Proof. The �rst task is to prove that f�ingi sets are discrete for all n. The proof

proceeds via induction. Assuming quasi-convex pro�t function and since the optimal

policy belongs to �, it is straightforward to see that through (35), the set of vectors

f�i0gi, �
�i0
	
i
�
 X
s2S

 X
�2A

(� (�; vi)) p (�js)
!
g (s)

!
p2�

is discrete. For the general case, observe that for discrete controls and assuming M =����jn�1	��, the sets ��jp;�	 are discrete, for a given action p and pro�ts �, I can only
generate �jp;��vectors. Now, �xing p it is possible to select one of the M �jp;��vectors

for each one of the observed consumption � and, thus, f�jngi is a discrete set. The

previous proposition, shows the value function to be convex. The piecewise-linear

component of the properties comes from the fact that f�jngi set is of �nite cardinality.

It follows that Vn is de�ned as a �nite set of linear functions.

Note also, that the pro�t function � (s) = �v � 1 is strictly quasi-convex in its ar-

guments. Therefore, the existence and uniqueness of the solution of the value iteration

problem of the �rm follows from the contraction mapping theorem.
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Appendix 7: Pseudocode

Let � be the shadow cost associated with �t = It (Bt; Dt).

� Step 1: Build the transition matrix T (�; bt; dt) convoluting the stochastic properties

of the random variables (B;D) on an equispaced grid.

� Approximate T by a �rst-order Markov process.

� Step 2: Build the simplex - an equispaced grid to approximate each g (Bt)- a simplex

point.

� Step 3: For each simplex point, de�ne p (bt; dt)and initialize V
�
g0�j (�)

�
= 0:

� Step 4: For each simplex point, �nd p� (b; d) which solves

V0 (g (bt))jp�(bt;dt) = maxp(bt;sd)
� P
bt2
w

P
dt2
c

(�t (b; d)) p
� (bt; dt)� � [It (Bt; Dt)]

�
:

� Step 5: For each simplex point, compute g0�j (�) =
P

bt2
b T (�; bt; dt) p
� (btjdt). Use a

kernel regression to interpolate V0 (g (bt)) into g0�j (�).

� Step 6: Optimize using csminwel and iterate on the value function to convergence.

� Step 7. For each model, draw from the ergodic p� (b; d), samples of (bt; dt) and use

the consumer�s F.O.C. to simulate the time series of consumption, prices, markups and

expected markups, pro�ts and exit decisions.

� Step 8. Compute the model-simulated empirical distribution of consumption, prices,

markups and the idiosyncratic shocks to generate the empirical transition matrix and

go back to Step 1.

� Step 9. Iterate until convergence.

Observations
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1. Firms�value function takes about 20 iterations to converge.

2. Global equilibrium (law of motion) takes up to 7 iterations to converge.
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